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Abstract We study the counts of resolved SZE (Sunyaev-Zel’dovich effect) clus-
ters expected from an interferometric survey in different cosmological models under
different conditions. The self-similar universal gas model and Press-Schechter mass
function are used. We take the observing frequency to be 90GHz, and consider two
dish diameters, 1.2 m and 2.5 m. We calculate the number density of the galaxy
clusters dN/(dΩdz) at a high flux limit Slim

ν = 100 mJy and at a relative low
Slim

ν = 10 mJy. The total numbers of SZE clusters N in two low-Ω0 models are
compared. The results show that the influence of the resolved effect depends not
only on D, but also on Slim

ν : at a given D, the effect is more significant for a high
than for a low Slim

ν . Also, the resolved effect for a flat universe is more impressive
than that for an open universe. For D = 1.2 m and Slim

ν = 10 mJy, the resolved
effect is very weak. Considering the designed interferometers which will be used to
survey SZE clusters, we find that the resolved effect is insignificant when estimating
the expected yield of the SZE cluster surveys.

Key words: cosmology: theory — galaxy: cluster: general —large-scale structure
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1 INTRODUCTION

Galaxy clusters, the largest virialized objects in the universe, consist of hundreds to thou-
sands of galaxies: they are the molecules of our huge universe. They represent structures on
scales of Mpc. Through the study of galaxy clusters, we can find much valuable information on
structure formation and cosmology. Especially, statistical investigation of large samples of such
clusters can constrain the fundamental cosmological parameters and thus distinguish different
cosmology models.

Nowadays, many observational approaches are used to survey and to study the clusters,
such as strong and weak gravitational lensing, X-ray and optical observations. During the last
10 years, interferometric techniques have been developed significantly, making it possible to
survey the clusters by detecting their Sunyaev-Zel’dovich effect (e.g., Bartlett 2000; Carlstrom
et al. 2000; Kneissl et al. 2001, hereafter the SZ effect).
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The SZ effect is generated through the interaction of intracluster hot electrons with cosmic
microwave background (CMB) photons (Sunyaev & Zel’dovich 1980). A cluster of galaxies
consists of a dark matter halo, galaxies and a hot intracluster medium (ICM). The typical
temperature of the ICM is 107−108 K. Galaxies and hot gas are in dynamical equilibrium with
the potential well of the dark matter halo. When CMB photons pass through the cluster, their
distribution of frequency changes due to the inverse Compton scattering with the hot electrons.
As a result, the CMB intensity is increased at frequencies ν > 219 GHz and is decreased at
frequencies ν < 219 GHz. The equivalent temperature increment (or decrement) ∆T of the
CMB photons toward a cluster is proportional to

∫
neTgasdl, where ne is the number density of

the electrons, Tgas is the temperature of the hot gas, and dl is the line element along the line
of sight. The temperature change ∆T , depending only on the thermal energy of the scattering
hot electrons which is determined by the mass of galaxy clusters, is redshift independent.

In the standard picture of structure formation, the growth of density perturbations depends
on the cosmological model, especially on the density parameter Ω0. Therefore when normalized
to the local cluster abundance, the redshift distribution of cluster abundance would be very
different for different models. Thus observation on the redshift distribution places useful con-
straints on cosmological parameters (e.g., Bahcall & Fan 1998; Fan & Chiueh 2001; Oukbir et
al. 1997; Viana & Liddle 1999). As the distribution at high redshift is the part most sensitive
to cosmological models, SZE cluster survey is very ideal in this regard.

A few authors (e.g., Barbosa et al. 1996; Bartlett 2000; Holder et al. 2000; Kneissl et al.
2000) have calculated the redshift distribution of the number density of clusters expected from
a SZE survey. Much of their work concentrated on unresolved SZE clusters or assessed the
resolved effects with mock surveys. In this paper, we study the resolved effect on SZE cluster
counts expected from an interferometric survey systematically with an analytical approach. For
an interferometric survey, there is a minimum baseline essentially limited by the dish diameter
D, which corresponds to the cutoff angular scale θc = λ/(2D). When θc is larger than the
angular scale of a cluster, all the SZE signal from the cluster will be received by the interfer-
ometer; otherwise, part of the SZE signal will be lost. To address this, we use the self-similar
gas model (Komatsu & Seljak 2001) to describe the gas density profile. The Press-Schechter
function is used to calculate the number density of SZE clusters analytically.

The rest of the paper is organized as follows. In Section 2 we determine the minimum
observable cluster mass Mlim(z) given Slim

ν . In Section 3 the number densities of resolved SZE
clusters in different cosmological models are calculated and in Section 4 we give a discussion.

2 DETERMINATION OF MASS THRESHOLD

We begin this section by calculating the SZE flux and in subsection 2.2 we study the
profile of the intracluster gas and detail how to determine the mass thresholds under different
conditions.

2.1 SZE Flux

The electron temperature Tgas in the ICM is much higher than the CMB photon temperature
TCMB and kTgas/(mec

2) � 1, the change of the CMB intensity due to the inverse-Compton
scattering can be written as (Sunyaev & Zel’dovich 1980)

∆I

ICMB
= Q(x)y , (1)
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where x = hpν/kTCMB, ν is the frequency of the CMB photons, hp is the Planck constant,
Q(x) has the form

Q(x) =
xex

ex − 1

[ x

tanh(x/2)
− 4

]
, (2)

and

y =
∫

neσT
kTgas

mec2
dl (3)

is the Compton parameter, where ne is the number density of hot electrons, σT = 6.65 ×
10−25cm2 is the Thomson cross section, k is the Boltzmann constant, Tgas is the temperature
of the intracluster hot gas, me is the electron mass, and c is the speed of light. Then the SZE
flux can be calculated as

Sν = SCMB
ν

∫
∆I

ICMB
dΩ = SCMB

ν Q(x)
∫

ydΩ = SCMB
ν Q(x)Y, (4)

where Y =
∫

ydΩ =
∫

ydA/R2
d, Rd is the angular diameter distance, and SCMB

ν = (2hpν
3

/c2)/(ex − 1) represents the unperturbed CMB specific intensity.
We assume that the intracluster gas is spherical and isothermal and the gas mass fraction

fICM is a constant. Then, for the unresolved case, i.e., if the cutoff angle is large enough that
the full SZE signal can be received by the interferometer, the integral in Eq.(4) is taken over
the projected area of the whole cluster,

Y =
σT

2mempc2
R−2

d fICM(1 + X)kTgasMvir, (5)

where mp is the proton mass, X is the hydrogen mass fraction, and Mvir is the virial mass of
the cluster. Then

Sν = 2.29× 104 x3

ex − 1
Q(x)× 1.70× 10−2h

(fICM

0.1

)(1 + X

1.76

)
× 7.75

0.5[d ln ρgas(r)/d ln r]rvir

( 6.8
5X + 3

)( Rd

100 h−1 pc

)−2

×(1 + z)
[ Ω0

Ω(z)

]1/3( ∆c

178

)1/3( Mvir

1015 h−1 M�

)5/3

mJy, (6)

where 1 mJy=10−26 erg cm−2 s−1 Hz−1, h is the Hubble constant in units of 100 km s−1 Mpc−1,
Ω(z) is the density parameter at redshift z, ρgas(r) is the radial density profile of the gas, rvir

stands for the virial radius of the cluster, and ∆c is the average mass density with respect to the
critical density at redshift z of the cluster formation (Fan & Chiueh 2001). Here the hydrostatic
equilibrium condition has been used in relating Tgas to Mvir, which will be given in Eq.(16).

However, for an array of interferometers, there exists a minimum baseline which is essentially
limited by the dish diameter D. Then, signals from angular scales larger than λ/2D are lost (λ
the observing wavelength). As a result, the integral in Eq.(4) is taken over the projected area
with θ ≤ θc and the results depend on the mass of gas contained in this region. Therefore, the
observed SZE flux depends on the density profile of the intracluster gas if θc is significantly less
than the angular scale of a cluster.
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2.2 The Gas Profile

So far, the isothermal β-model is the most popular model for calculating the gas density
profile (Birkinshaw 1999). It consists of a central core and a power law outer part with slope
β:

ρgas(r) = ρgas(0)
[
1 +

( r

rc

)2]−3β/2

, (7)

where rc is the core radius. Though this model fits well the X-ray emissions which are mainly
from the central parts of clusters, it becomes less accurate for the outskirts of the gas distri-
bution, where the SZ effects are still relatively significant. In the following we will describe
the self-similar gas density profile (Komatsu & Seljak 2001), which is based on the assumption
of hydrostatic equilibrium and on that the gas density profile traces the dark matter density
profile in the outer part of a halo.

N-body simulations suggest that a dark matter halo has a self-similar density profile (Navarro,
Frenk & White 1997; Komatsu & Seljak 2001)

ρDM = ρsyDM(r/rs), (8)

where ρs is a normalization factor of mass density, yDM is a dimensionless function representing
the dark matter density profile, rs is the characteristic scale that separates the inner and outer
parts of the profile.

Following usual convention, we define the concentration parameter c as

c ≡ rvir/rs, (9)

where the virial radius rvir can be calculated according to (e.g., Peebles 1980)

rvir =
[ Mvir

(4π/3)ρc(z)∆c(z)

]1/3

. (10)

Then from Eq.(8), we have
Mvir = 4πρsc

−3r3
virm(c) , (11)

where m(x) is defined as

m(x) =
∫ x

0

u2yDM(u)du . (12)

Makino et al. (1998) and Suto et al. (1998) suggested that hydrostatic equilibrium between
the gas pressure and the self-similar dark matter eventually gives the self-similar gas density
profile as

ρgas(r) = ρgas(0)ygas(r/rs), (13)

where ρgas(0) is the gas density at r = 0, ygas(r/rs) is the normalized gas density profile. In the
following, we give a detailed derivation for the isothermal case. The hydrostatic equilibrium
condition indicates

ρ−1
gas

dPgas

dr
= −G

M(≤ r)
r2

, (14)

where G is the gravitational constant, M(≤ r) is the dark matter mass enclosed in radius r.
With Pgas = kngasTgas and Tgas a constant, we have

kTgas

µgasmp

d ln ρgas

dr
= −G

M(≤ r)
r2

, (15)
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where µgas = 4/(5X + 3) is the mean molecular weight. Taking r = rvir, we obtain

kTgas = − 1
[d ln ρgas(r)/d ln r]rvir

µgasmp
GMvir

rvir
, (16)

where [d ln ρgas(r)/d ln r]rvir can be obtained from Komatsu & Seljak (2001). Substituting
M(≤ r) in Eq.(15) for Table A1 (see Appendix), we have

ln
[ ρgas(r)

ρgas(0)

]
=

[ d ln ρgas(r)
d ln r

]
rvir

× c

m(c)

∫ x

0

m(u)
u2

du , (17)

where x = c× r/rvir. Comparing Eq. (17) with Eq. (13), we find

ygas(x) = exp
{[ d ln ρgas(r)

d ln r

]
rvir

× c

m(c)

∫ x

0

m(u)
u2

du
}

. (18)

We adopt

yDM =
1

xα(1 + x)3−α
, (19)

the most common form used in N−body simulations, to calculate the gas density profile, where
α is a parameter which is often taken as 1.0 (Navarro et al. 1997) or 1.5 (Moore et al. 1998;
Jing & Suto 2000). In this paper, we take α = 1.0. The other useful formulae are listed in
Table A1. We plot ygas for different masses (1013h−1M�, 1014h−1M�, 1015h−1M�), in Fig. 1.

When the cutoff angular scale θc is less than the angular radius of the cluster, then

Y =
∫

ydΩ = R−2
d

∫
ydA = R−2

d

∫ rlim

0

2πr

∫
neσT

kTgas

mec2
dldr =

σT

2mempc2
R−2

d fICM

×(1 + X)kTgasMvir

2π
∫ rlim

0
r(

∫
ρgas(

√
r2 + l2)dl)dr∫ rvir

0
4πr2ρgas(r)dr

, (20)

where rlim = θc ×Rd is the radius of the field that the interferometer can see at redshift z.

Fig. 1 Normalized density profile of the intracluster gas. The mass

above every curve represents the virial mass of the cluster.
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Then, the resolved SZE flux can be calculated as

Sν = 2.29× 104 x3

ex − 1
Q(x)× 1.70× 10−2h×

(fICM

0.1

)(1 + X

1.76

)
× 7.75

0.5[d ln ρgas(r)/d ln r]vir

( 6.8
5X + 3

)( Rd

100h−1Mpc

)−2

×(1 + z)
[ Ω0

Ω(z)

] 1
3
( ∆c

178

) 1
3
( Mvir

1015h−1M�

) 5
3

×
2π

∫ rlim

0
r(

∫
ρgas(

√
r2 + l2)dl)dr∫ rvir

0
4πr2ρgas(r)dr

mJy. (21)

We see that given the cutoff angular scale and the redshift, the SZE flux decreases with
decreasing Mvir. Then for a given flux limit, there is a minimum mass for a cluster to be
observable. In our calculation, we take the observational frequency ν = 90 GHz and the dish
diameter as 1.2m and 2.5 m. Then λ ' 0.33 cm, and λ/2D ∼ 2.27 arcmin for D = 2.5 m and
λ/2D ∼ 4.7 arcmin for D = 1.2 m. For a given flux limit Slim

ν , Mlim(z) can be obtained from
Eq.(21).

Four different cosmological models are considered here:

• SCDM: Ω0 = 1.0,ΩΛ = 0, h = 0.5,Γ = 0.5, σ8 = 0.52;
• τ -CDM: Ω0 = 1.0,ΩΛ = 0, h = 0.5,Γ = 0.25, σ8 = 0.52;
• open-CDM: Ω0 = 0.3,ΩΛ = 0, h = 0.83,Γ = 0.25, σ8 = 0.87;
• ΛCDM: Ω0 = 0.3,ΩΛ = 0.7, h = 0.83,Γ = 0.25, σ8 = 0.93;

where Γ is the shape parameter of the power spectrum of the linear density fluctuation, and σ8

is the rms fluctuation amplitude smoothed over 8h−1 Mpc.

Fig. 2 Mlim(z) with Slim
ν = 10mJy. The thick

line is for SCDM model, the thinner for open-

CDM model and the thinnest for ΛCDM, respec-

tively. The solid line represents the unresolved

case and the dotted line for D = 1.2m and the

dash for D = 2.5m, respectively. Because the

resolved effect for D = 1.2m is very small, the

dotted lines are little different from the solid lines

and are barely recognizable.

Fig. 3 Mlim(z) with Slim
ν = 100mJy. The

thick line is for SCDM model, the thinner

for open-CDM model and the thinnest for

ΛCDM, respectively. The solid line represents

the unresolved case and the dotted line for

D = 1.2m, respectively.
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Figure 2 shows Mlim(z) for Slim
ν = 10 mJy. The thick lines represent the mass threshold

for SCDM model and τ -CDM model (from Eqs.(6) and (21), we find that Γ is irrelevant here,
so the result for the SCDM model is the same as for the τ -CDM model). The thinner lines
represent the mass threshold for the open-CDM model and the thinnest lines for the ΛCDM.
The solid lines plot the unresolved results, the dotted lines plot the results for D = 1.2 m and
the dash lines for D = 2.5 m. We see that the resolved effect for D = 1.2 m is very small. We
show Mlim(z) for Slim

ν = 100 mJy in Fig. 3. The line types are all the same as Fig. 2. It is
notable that given D = 1.2 m, the resolved effect for Slim

ν = 100 mJy is much stronger than
that for Slim

ν = 10 mJy.

3 SZE CLUSTER COUNT

Given Mlim(z), the number density dN/(dΩdz) of clusters with masses Mvir > Mlim can
be obtained by

dN

dΩdz
=

dV

dΩdz

∫
Mlim(z)

n(M)dM

=
c

H0
R2

d

[ Ω0

1 + z
+

( ΩΛ

1 + z

)4

+
( Ωk

1 + z

)2 ]− 1
2 ×

∫ ∞

Mlim(z)

n(M, z)dM, (22)

where n(M, z) is the comoving number density of clusters between masses M and M + dM at
redshift z. According to Press & Schechter (1974),

n(M, z) = −
( 2

π

) 1
2 ρ0

M

δc(z)
σ2

0

dσ0

dM
exp

[
− δ2

c (z)
2σ2

0

]
, (23)

where ρ0 is the present mean cosmic mass density, σ0 the variance of linear fluctuations
smoothed over the mass scale M at the present time, and δc(z) the threshold of the linear
overdensity of a perturbation which has collapsed and virialized at redshift z. We take δc(z)/σ0

as (Navarro et al. 1997; Jain & Seljak 1997)

δc(z)
σ0

=
δ0
c (Ω(z))

D+(z,Ω0,Λ)σ8( R
8h−1Mpc )

−γ(R)
, (24)

where D+(z,Ω0,Λ) is the linear growth factor, and following Holder et al. (2000),

γ(R) = (0.3Γ + 0.2)
[
2.92 + log10

( R

8h−1Mpc

)]
. (25)

The comoving radius R is determined through

R =
( M

4π
3 ρ0

) 1
3

= 9.5084h−1
( M

1015h−1M�Ω0

) 1
3
Mpc. (26)

Combining Eqs.(23), (24), (25) and (26), we can obtain

n(M, z)dM = 2.5139× 10−31h3Ω0

( M

1015h−1M�

)−2

× δc(z)
σ0

×
[
(0.3Γ + 0.2)

× log10

( R

8h−1Mpc

)
+ γ(R)

]
exp

(
− δ2

c (z)
2σ2

0

)
d
( M

1015h−1M�

)
. (27)
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4 RESULT AND DISCUSSION

Using Eqs.(22), (27) and Mlim(z) derived before, we calculate dN/(dΩdz) for four cos-
mological models and the total number of SZE clusters in the two low-Ω0 models listed in
Section 2.2.

The SZE cluster distributions are shown in Fig. 4 with Slim
ν = 10 mJy and in Fig. 5 with

Slim
ν = 100 mJy. It can be seen that in the unresolved cases, the curves with Ω0 = 1 are

drastically different from those of the low-Ω0 models, while the differences between the two
low-Ω0 models are not impressive, especially for Slim

ν = 100 mJy. However, for Slim
ν = 10 mJy,

it is still possible to distinguish the ΛCDM model from the open-CDM model, because the
curve of the latter has a long tail at high redshift (Fan & Chiueh 2001). Moreover, the expected
resolved number densities of galaxy clusters are lower than the unresolved ones. We can also
find that the redshift distribution of Ω0 = 1 models is still drastically different from that of
low-Ω0 models, but the differences between the two low-Ω0 models are sensitive to the resolved
effect. In the following, we mainly discuss the influence of the resolved effect on the two low-Ω0

cosmological models.

Fig. 4 Redshift distribution of SZE clusters with Slim
ν = 10mJy. The solid, dash,

dotted and dash−dotted line represent SCDM, τ -CDM, open−CDM and ΛCDM,

respectively. Fig. 4 (a), (b), (c) represent the unresolved case, and the cases with

D = 1.2m and D = 2.5m.
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It can be seen clearly that the resolved effect increases with increasing D or Slim
ν , and that,

for the same parameter values, the influence of the resolved effect for the ΛCDM model is more
significant than that for the open model.

Fig. 5 Redshift distribution of SZE clusters with Slim
ν = 100 mJy. The solid, dash, dotted and

dash−dotted line represent the SCDM, τ -CDM, open−CDM and ΛCDM, respectively. Fig. 5 (a)

and (b) represent the unresolved case and the case with D = 1.2m, respectively.

The resolved effect changes the mass threshold function from Eqs.(6) to (21) through mul-

tiplying the right side of Eq. (6) by
2π

∫ rlim
0

r(
∫

ρgas(
√

r2+l2)dl)dr∫ rvir
0

4πr2ρgas(r)dr
, which can be rewritten as

F (z, x′lim) =
2π

∫ x′lim
0

x′[
∫

ygas(c
√

x′2 + ( l
rvir

)2)d( l
rvir

)]dx′∫ 1

0
4πx′2ygas(cx′)dx′

, (28)

where x′ = r/rvir is the dimensionless radius of the galaxy clusters, x′lim = rlim/rvir represents
the radius of the area that the interferometer can see. Therefore, F (z, x′lim) denotes the influence
of the resolved effect. In fact, F (z, x′lim) is the ratio of the projected gas mass contained in rlim

to the total gas mass in a galaxy cluster. Obviously, F (z, x′lim) increases with increasing x′lim.
According to our definition,

x′lim =
rlim

rvir
∝ Rd/D

[Mvir/(ρc(z)∆c(z))]1/3
(29)

is dependent on the cosmological parameters, the dish diameter D, the redshift z and Mvir.
Given z, the cosmological model and Mvir, x′lim decreases with increasing D. So, the resolved
effect will be stronger with an increase in D.

Given D and Slim
ν , it is also derived that

[x′lim]open

[x′lim]ΛCDM
=

[rlim/rvir]open

[rlim/rvir]ΛCDM
=

[Rd(ρc(z)∆c(z))
1
3 ]open

[Rd(ρc(z)∆c(z))
1
3 ]ΛCDM

. (30)

Our calculation shows that the ratio is higher than 1. So, the resolved effect in the ΛCDM
model is stronger than that in the open-CDM model for the same Mvir.
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Furthermore, galaxy clusters with high Mvir have low concentration parameters c and larger
sizes. So corresponding to the same x′lim, F (z, x′lim) should be lower, i.e., more signal will be
lost. Then the resolved effect will be stronger with high Mvir.

We can also rewrite x′lim as

x′lim =
θc

θvir
, (31)

where θvir = rvir/Rd denotes the cluster’s virial angular radius. Given Mvir, θvir decreases with
increasing redshift z. Thus when z is high enough so that θvir of the galaxy cluster is smaller
than θc, the resolved count will merge to the unresolved count, which is consistent with our
results.

To see the resolved effect in the two low−Ω0 models more directly, we plot the total number
of SZE clusters N for different Slim

ν in Figs. 6 and 7. The results show that given Slim
ν < 10 mJy,

the resolved effect with D = 1.2 m has little influence on the cluster count. For Slim
ν > 10 mJy,

N(D = 1.2 m) is markedly lower. At Slim
ν = 20 mJy, N(D = 2.5 m) is about one third less

than N(unresolved). With D = 2.5 m, N(D = 2.5 m) is drastically different from that of the
unresolved case, about one-half lower than N(unresolved) at Slim

ν = 10 mJy and one order of
magnitude lower at Slim

ν = 90mJy.

Fig. 6 Total number of SZE clusters cor-

responding to different Slim
ν for the ΛCDM

model. The solid, dotted and dash line repre-

sents unresolved count and the resolved counts

with D = 1.2m and D = 2.5m, respectively.

Fig. 7 Total number of SZE clusters cor-

responding to different Slim
ν for open-CDM

model. The solid, dotted and dash line repre-

sents unresolved count and the resolved counts

with D = 1.2m and D = 2.5m, respectively.

From the above, we conclude that it is significant to check whether the resolved effect should
be taken into account when making predictions for different SZ cluster surveys, especially for
those with high Slim

ν or large D.
At present, there are several proposed or planned antenna arrays that will be used for

surveying SZE clusters, such as AMIBA (Lo et al.), AMI (Kneissl et al. 2001) and SZA (Holder
et al. 2000). We list their observing characteristics in Table 1.

It can be found that θcutoff are relatively large. In addition, the sensitivities of these antenna
arrays are high and Slim

ν can be as low as 5 mJy. So for these SZE surveys, the resolved effect
would be negligible, and we can use the unresolved counts safely to predict the survey results
for different cosmological models. We also should mention here that besides the resolved effects,
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there are other issues needed to be considered in a real survey, and thus careful studies on a
specific survey should be taken in order to give detailed predictions on the observational gains.

Table 1

D(m) Operating frequency (GHz) θcutoff (arcmin)

AMIBA 1.2 90 4.7

0.3 90 18.9

AMI 13.0 15 3.8

3.7 15 17.4

SZA 2.5 30 7.0

Appendix

Table A1

α 1.0 1.5

yDM
1

x(1+x)2
1

x1.5(1+x)1.5

c 6( Mvir
1014 h−1 M�

)−1/5 3.529( Mvir
1014 h−1 M�

)−1/5

[ln ρgas/ ln rvir]rvir

1+3c
1+c

1.5 1+2c
1+c

m(x) ln(1 + x)− x
1+x

2 ln(
√

x +
√

1 + x)− 2
√

x
1+x∫ x

0
dum(u)

u2 1− ln(1+x)
x

− 2 ln(
√

x+
√

1+x)
x

+ 2
√

1+x
x

M(≤ r) [m(c·r/rvir)
m(c)

]Mvir [m(c·r/rvir)
m(c)

]Mvir
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