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Abstract Inspired by the analogy between the magnetic field and velocity field
of incompressible fluid flow, we propose a fluid dynamics approach for comput-
ing nonlinear force-free magnetic fields. This method has the advantage that the
divergence-free condition is automatically satisfied, which is a sticky issue for many
other algorithms, and we can take advantage of modern high resolution algorithms
to process the force-free magnetic field. Several tests have been made based on the
well-known analytic solution proposed by Low & Lou. The numerical results are
in satisfactory agreement with the analytic ones. It is suggested that the newly
proposed method is promising in extrapolating the active region or the whole sun
magnetic fields in the solar atmosphere based on the observed vector magnetic field
on the photosphere.
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1 INTRODUCTION

It is essential to have a basic understanding of the large-scale dynamics of the magnetized
plasma and magnetic fields of the Sun (Parker 2001). However, so far, there has been no direct
measurement of magnetic fields in the solar corona where the primary magnetic energy release
takes place in solar activities. As is well known, force-free magnetic field is believed to be a
good approximation to the coronal magnetic field, it is described by the following equations

B × (∇×B) = 0, (1)

∇ ·B = 0 . (2)

Reconstruction of the magnetic structures in the solar atmosphere based on the force-free field
assumption is of importance both in observational studies of magnetic activity, e.g., coronal
mass ejection (Zhang, Wang & Nitta 2001), and in theoretical and numerical approaches (Ji &
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Song 2001; Chen, Fang & Ding 2001). A variety of methods have been proposed to solve the
force-free magnetic field equations. These methods are broadly classified into three classes by
McClymont et al. (1997), namely, the extrapolation methods, current-field iteration methods
and quasi-physical evolutionary methods. See references (McClymont et al. 1997; Wang 1999)
for rather comprehensive reviews on this classification and some commonly used methods.

In addition to the methods cited in the above references, Wheatland et al. (2000) presented
an optimized approach for reconstructing force-free magnetic fields. Their method is based on
minimizing the global departure of an initial field from a free-force and solenoidal state. Also,
an evolutionary procedure is used. Amari et al. (1997) discussed the mathematics encountered
in attempts to reconstruct the force-free coronal magnetic field from the observed photospheric
magnetic values. They also presented a potential vector Grad-Rubin-like method and a 3-D
MHD evolutionary method.

The methods mentioned above are faced with a common issue: the results are difficult to
satisfy the divergence-free condition. In this paper, we propose a new computational approach.
One of the advantages of the newly proposed method is that the numerical solution is effec-
tively forced to satisfy the divergence-free equation, by explicitly including the equation into
the computation. The core of the method is as follows. Inspired by the analogy between the
magnetic field and the velocity field of incompressible flow, we treat the magnetic field as an
incompressible fluid velocity field. Then by Bernoulli’s principle for steady flow and through
an appropriate choice of the pressure of the fluid on the boundary, we can make the velocity
field to satisfy the Eqs. (1) and (2), the force-free magnetic equations. Accordingly, with this
transformation, we can take full advantage of modern high resolution algorithms of compu-
tational fluid dynamics to solve the force-free magnetic field problem. Considering the rapid
development made in computational fluid dynamics, this is really an attractive feature.

We use the analytic solution proposed by Low & Lou (1990) to test the new approach, and
find that the computational result is in satisfactory agreement with the theoretical solution.
Furthermore, considering that in the application of the method to the computation of the
active region magnetic field, only the filed values on the photosphere are available, we propose
a procedure to treat the upper and side boundary conditions. The method promises to be useful
for computing the active region and full global nonlinear force-free coronal magnetic field.

2 COMPUTATIONAL PRINCIPLE

Consider the steady incompressible invisid fluid equations

∇ · v = 0, (3)

(v · ∇)v = −1
ρ
∇p + f . (4)

Equation (4) can be cast into
1
2
∇(v · v)− v × (∇× v) = −1

ρ
∇p + f . (5)

If f is potential force, then it can be denoted as

f = −∇φ . (6)

By Bernoulli’s principle, the equation
1
2
|v|2 +

p

ρ
+ φ = const. (7)
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holds along any streamline. However, for two different streamlines the corresponding constants
are generally different. If every streamline in the flow passes through the boundary of the
volume occupied by the fluid, we can choose appropriate pressure on the boundary, such that
the equation

1
2
|v|2 +

p

ρ
+ φ = const. (8)

holds on the boundary. Then by Bernoulli’s principle, one has

1
2
|v|2 +

p

ρ
+ φ = const. (9)

for the whole fluid. Hence Equation(4) becomes

v × (∇× v) = 0. (10)

In the above and later discussion the density ρ is taken to be unity.
In summary, the discussion has shown that, if every streamline in the incompressible invisid

steady flow passes through the boundary of the volume occupied by the fluid, we can choose
suitable pressure on the boundary, such that the following equations

v × (∇× v) = 0, (11)

∇ · v = 0 (12)

are satisfied everywhere in the flow.
Since the coronal magnetic field is believed to be anchored on the photosphere surface, we

can assume that every magnetic field line passes through the photosphere surface. Under this
condition, if we have a velocity field which satisfies the invisid incompressible fluid equations

∇ · v = 0, (13)

(v · ∇)v = −∇p, (14)

in the domain r > Rs, and satisfies the following boundary conditions

v(Rs) = B(Rs), (15)

p(Rs) = const.− 1
2
|v(Rs)|2, (16)

where Rs is the solar radius, B(Rs) is the observed photosphere magnetic field, then by the
above discussion, the velocity result can be taken as the force-free magnetic field that agrees
with the observed vector magnetic field on the photosphere.

3 COMPUTATIONAL SCHEME

A variety of computational methods have been developed in computational fluid dynamics
to deal with the incompressible steady flow equations. Among them is the artificial compression
method proposed by Chorin (1967), and improved by many other authors (Turkel 1987; Liu et
al. 1998). In this method, time-dependent equations

∂U

∂t
+

∂F (U)
∂x

+
∂G(U)

∂y
+

∂H(U)
∂z

= S, (17)
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where U = (p, u, v, w)T , F (U) = (β2u, p+u2, vu, wu)T , G(U) = (β2v, uv, p+v2, wv)T , H(U) =
(β2w,wu, wv, p + w2)T , S = (0, 1

Re4u, 1
Re4v, 1

Re4w) in domain r > Rs, and

v(Rs) = B(Rs), (18)

p(Rs) = const.− 1
2
|v(Rs)|2 (19)

are solved. Equation (17) has no physical meaning until the time derivative of p reaches zero, β is
chosen to guarantee the hyperbolic property of Eq. (17), as well to reach a fast convergence rate
and computational stability. It has been shown by Fortin et al. that the solution to Eqs. (17)–
(19) will converge to the solution of steady equations, if the initial velocity is divergence-free (see
Lecture Notes in Physics, Vol. 8, pp.337–342, Springer-Verlag, New York, 1971). However, our
computation shows convergence even for the initial velocity prescribed by Eq. (20). For a good
presentation of Chorin’s method, see page 144–159 of (Peyret & Taylor 1983) and its references.
It also describes other methods for incompressible fluid flow. During the computation, the
Reynolds number Re is variable and tends to infinity with time, so that the limit solution
satisfies the invisid equations.

In our test computation, the domain is taken to be {(x, y, z)| − 1≤x≤1,−1≤y≤1, 0≤z≤1}.
The bottom physical boundary conditions are determined by Eqs. (15) and (16), and we assume
the upper computational boundary condition is known or can be determined in some way
(further described later in our test cases and the discussion part). The initial conditions within
the computational domain are as follows:

v0(x, y, z) = 0, (20)

p0(x, y, z) = const.− 1
2
|v0(x, y, z)|2. (21)

On the boundary, the initial values are determined by the boundary conditions.

4 HIGH RESOLUTION RIEMANN SOLVER

In order to improve the accuracy of the result of computation, we take the MUSCL-Hancock
algorithm (van Leer 1985), which is a high resolution algorithm based on a Riemann solver.
The algorithm for the 1-D case is descried as follows:

Step1: Let

Ui(x) = Un
i +

x− xi

4x
4i , x ∈ [xi− 1

2
, xi+ 1

2
] , (22)

then we have

UL
i = Un

i −
1
2
4i, (23)

UR
i = Un

i +
1
2
4i, (24)

where
4i =

1
2
(1− ω)(Un

i − Un
i−1) +

1
2
(1 + ω)(Un

i+1 − Un
i ), ω ∈ [−1, 1] . (25)

Step 2: Calculate

U
L

i = UL
i +

1
2
4t

4x
[F (UL

i )− F (UR
i )], (26)

U
R

i = UR
i +

1
2
4t

4x
[F (UL

i )− F (UR
i )]. (27)
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Step 3: Let

UL = U
R

i , (28)

UR = U
L

i+1, (29)

then solve the Riemann problem
Ut + F (U)x = 0, (30)

U(x, 0) =
{

UL, if x < 0,
UR, if x > 0.

(31)

We have

F i+ 1
2

=
1
2
(FL + FR)− 1

2

m∑
i=1

α̃i|λ̃i|K̃(i), (32)

where α̃i, λ̃i, and K̃(i) are determined by

UR − UL =
m∑

k=1

α̃kK̃(k), (33)

FR − FL =
m∑

k=1

α̃kλ̃kK̃(k) . (34)

Step 4:

Un+1
i = Un

i +
∆t

∆x
[F i− 1

2
− F i+ 1

2
] (35)

In the 3-D case, we make use of the finite volume method. The above steps can be applied
to determine the flux across every surface of the cells.

5 TEST CASES

The procedures itemized above are tested by using the nonlinear force-free analytic solutions
proposed by Low & Lou (1990). In the first test, the analytic solution is taken to be

B =
1

r sin θ

(1
r

∂A

∂θ
r̂ − ∂A

∂r
θ̂ + Qφ̂

)
, (36)

where A = P (cos θ)
rn , Q(A) = aA1+ 1

n and P (µ) is determined by the equation

(1− µ2)
d2P

dµ2
+ n(n + 1)P + a2 1 + n

n
P 1+2/n = 0. (37)

The parameters of the solution are as follows: n = 1,m = 2, a2 = 2.55, z0 = −0.5,Φ = 0. The
meaning of these parameters is as the same as in (Low & Lou 1990). This test consists of two
phases. First, the theoretical analytic solution is taken as the initial condition and the boundary
condition. Theoretically, the solution should remain at the original values. However, it does
evolve due to numerical error of discretization: the numerical divergence of the theoretical
solution is not zero, the maximum of the divergence reaches up to 140. After a period of
evolution, the solution approaches a stable state, and the solution basically keeps constant
after 100 seconds of evolution, the maximum of divergence is below 0.01. This solution is taken
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as the “numerical” analytic solution, and will play a role in the checking of the precision of the
second phase of the numerical test. See Fig. 2 (left) for the result.

Fig. 1 Left: Theoretical analytic solution; Right: Contour of the Bz of the analytic solution.

Fig. 2 Left: “Numerical” analytic solution; Right: Numerical solution.

In the second phase of the test, we take the boundary value of the analytic solution as our
boundary condition, the initial values are obtained through linear interpolation of the upper
and lower boundary values. After 200 seconds, the numerical solution reaches stable state, its
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maximal divergence is below 0.01 again (Fig. 2, right). The difference between this solution and
the one obtained in the first phase are also below 1%.

In the second test, the parameters are taken to be as follows: n = 1,m = 2, a2 = 2.55, z0 =
−0.5,Φ = π

2 . The axis of symmetry of the above analytic solution is rotated to be parallel to
the x-axis, so that in the computation domain, the solution is no longer axis-symmetric. The
corresponding analytic and numerical results are shown in Figs. 3 and 4. Again, the numerical
result is in good agreement with the analytic solution.

Fig. 3 Left: Theoretical analytic solution 2; Right: the Bz contours of the analytic solution 2.

Fig. 4 Left: “Numerical” analytic solution 2; Right: Numerical solution 2.



254 J. Q. Li, J. X. Wang & F. S. Wei

Considering the situation in the practical application to the computation of the coronal
magnetic field, we propose the following treatment on the side and upper boundary conditions.

Step 1, let
∇φ = B, (38)

we are going to to solve the potential field problem:

∆φ = 0, (39)

∂φ

∂n
|z=0 = Bz(x, y, 0), (40)

φ(M) = O
( 1

rOM

)
,

∂φ

∂n
= O

( 1
r2
OM

)
, (rOM →∞), (41)

where rOM denotes the distance between the origin and the point M. The solution to the above
equation is

φ(x0, y0, z0) =
z0

2π

∫ +∞

−∞

∫ +∞

−∞

φ(x, y, 0)
[(x− x0)2 + (y − y0)2 + z2

0 ]
3
2
dxdy, (42)

where

φ(x, y, 0) = − 1
2π

∫ +∞

−∞

∫ +∞

−∞

Bz(x, y, 0)
[(x− s)2 + (y − t)2]

1
2
dsdt . (43)

Step 2, take the value of the above potential field on the side and upper boundaries as new
side and upper boundary conditions, the bottom boundary values are taken to be the observed
magnetic field values, then solve the force-free field using the procedure presented in Sec. 2 to
Sec. 4.

Fig. 5 Left: potential solution; Right:force-free solution.
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Fig. 6 Left: potential solution; Right: force-free solution.

Using this procedure, we also take the third and fourth test on our algorithm. The results
are shown in Figs. 5 and 6, where the left panel shows the potential field solution, while the
right panel shows the corresponding force-free solution. The related parameters in test 3 and
test 4 are the same as in test 1 and test 2, respectively.

6 DISCUSSION

By the analogy between the fluid velocity fields in incompressible steady flows and magnetic
fields, we have proposed a new fluid dynamics approach for computing force-free magnetic field.
The new method has the advantage of automatically satisfying the divergence-free constraint.
Moreover, the force-free coefficient α, which is generally unknown and sticky to treat, does not
appear explicitly in our algorithm, as it does in many other methods. The artificial compression
method is used to solve the steady flow equations, Eqs. (13) and (14), with the boundary values
based on the analytic solution proposed by Low & Lou (1990), and the zero field as the initial
condition.

In our test computation, the boundary values are taken to be fixed during the computation,
in future improvement of the algorithm, the nonreflecting boundary conditions (Hu et al. 1984)
or other methods will be taken to improve the numerical precision.

Considering the rapid development of the numerical methods made in the computational
fluid dynamics, the new approach is promising and will evolve with new development of incom-
pressible fluid dynamics computational methods .
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