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Abstract For LAMOST, the largest sky survey program in China, the solution of
the problem of automatic discrimination of stars from galaxies by spectra has shown
that the results of the PSF test can be significantly refined. However, the problem
is made worse when the redshifts of galaxies are not available. We present a new
automatic method of star/(normal) galaxy separation, which is based on Statistical
Mixture Modeling with Radial Basis Function Neural Networks (SMM-RBFNN).
This work is a continuation of our previous one, where active and non-active celestial
objects were successfully segregated. By combining the method in this paper and
the previous one, stars can now be effectively separated from galaxies and AGNs by
their spectra—a major goal of LAMOST, and an indispensable step in any automatic
spectrum classification system. In our work, the training set includes standard
stellar spectra from Jacoby’s spectrum library and simulated galaxy spectra of E0,
S0, Sa, Sb types with redshift ranging from 0 to 1.2, and the test set of stellar
spectra from Pickles’ atlas and SDSS spectra of normal galaxies with SNR of 13.
Experiments show that our SMM-RBFNN is more efficient in both the training
and testing stages than the BPNN (back propagation neural networks), and more
importantly, it can achieve a good classification accuracy of 99.22% and 96.52%,
respectively for stars and normal galaxies.

Key words: methods: data analysis — techniques: spectroscopic — stars: gen-
eral — galaxies: stellar content

1 INTRODUCTION

The Large Sky Area Multi-Object Spectroscopic Telescope (LAMOST), now being built
in China, is a huge sky survey program where more than 107 spectra of faint celestial objects
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down to 20.5 mag will be collected. Most of the objects are galaxies and AGNs, but some stars
will be accidentally included. Automatically separating stars from galaxies and AGNs via their
spectra is a key issue in the automated classification of point and point-like sources using the
PSF test of images. In the program not only the object type but the associated redshift value
also needs to be determined by some automated methods. Moreover, the SNR of those spectra
is expected to be very low, which further aggravated the problem of automatic classification.

To our knowledge, only automated classification of spectra with known redshifts is reported
in the literature (Connolly et al. 1995; Galaz & Lapparent 1998; Zaritsky et al. 1995). How to
automatically separate spectra with unknown redshifts seems a more difficult and challenging
task.

In terms of spectra, stars and normal galaxies can be regarded as non-active objects, while
active galaxies and AGNs as active objects. Then, the separation of stars from galaxies and
AGNs can be divided into two stages, as shown in Fig. 1. The first stage separates the active
and non-active objects; the second stage, the stars and the normal galaxies. Since the first
stage has been reported in our previous paper, where the non-active objects and active objects
were successfully distinguished by a PCA+SVMs method, our present work is concentrated on
the second stage, i.e., how to effectively extract stars from the non-active objects obtained from
the first stage. In this work, a method based on PCA and SMM-RBFNN is used.

Fig. 1 Flow of spectral classification of celestial objects.

Stars and normal galaxies both have their own benchmark classifications. For example, the
MK classification of stellar spectra classifies stars into seven main spectral types in the order of
decreasing temperature, namely: O, B, A, F, G, K, M. Each type is in turn subdivided into 10
subtypes, ranging from 0 (the hottest) to 9 (the coolest), i.e., A0, A1, A2, ... A8, A9. Stellar
spectra of the seven main types are shown in Fig. 2. Galaxies are classified into three broad
groups based on their morphological structure according to the famous Hubble classification.
They are ellipticals E, spirals S and irregulars I. In the present paper, we summarize normal
galaxies spectra into four types, E0, S0, Sa, and Sb, which are shown in Fig. 3. For a normal
galaxy, as a result of its stellar composition, its spectrum is quite similar to stellar spectra of
F, G and K type, this contributing to the difficulty of classification.
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Fig. 2 Seven main types of stellar spectra.

Fig. 3 Four templates of normal galaxies.
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The organization of the present paper is as follows: In Section 2, we introduce the data set
used in our experiments; In Section 3, the reduction of spectra dimension by a PCA method
is described. In Section 4, spectral classification with SMM-RBFNN is elaborated. The ex-
perimental results are reported in Section 5, and finally some concluding remarks are given in
Section 6.

2 THE DATA SET

2.1 Stellar Spectra

The stellar spectra used in our experiments are mostly selected from Astronomical Data
Center (ADC). Among them, 161 stellar spectra given by Jacoby et al. (1984) are used in our
training set and 131 observed by Pickles et al. (1998) are used in our testing set as well as 96
by Pickles et al. (1985). The spectra taken from the above libraries have respective resolutions
of 1.4, 5 and 12 Å. In addition, we also used noise-added spectra with empirically controlled
SNR by adding Gaussian noises.

2.2 Simulated Galaxy Spectra

Normal galaxy spectra in our training set were simulated from four templates of the types
E, S0, Sa and Sb, in the galaxies spectrum atlas discussed by Kinney et al. (1996) and Calzetti
et al. (1994). The templates are plotted in Fig. 3. The simulated spectra are generated from
the above rest-frame templates by changing the redshift according to the equation

λ = (1 + z)λ0. (1)

Since the rest-frame templates cover the wavelength range of 1200–10 000Å, we could obtain
240 simulated redshifted normal galaxy spectra with redshift values ranging from 0.01–1.2 with
a step of 0.02. In the testing set, we use 861 observed spectra selected from SDSS with average
SNR of 13. Furthermore, the simulated “noise-added” redshifted spectra are used to test the
robustness of our classifier.

All spectra are digitized and linearly interpolated to the wavelength range of 3800–7420 Å
with a step of 5 Å.

3 SPECTRAL DIMENSION REDUCTION WITH PCA

Principal Components Analysis (PCA) (Bian & Zhang 1999; Huang et al. 2000; Qin et al.
2001) is a good tool for dimension reduction, data compression and feature extraction. In our
work, we use PCA to remove redundant or insignificant information of spectral data to obtain a
reduced dimension input space for our classifier. First, all the spectra, X ′

N×M , are normalized
by

XN×M = (xij)N×M =
(x′ij −X′

j

S′j

)
N×M

, (i = 1, . . . N ; j = 1, . . . M) , (2)

where XN×M is the normalized spectra matrix, X′
j and S′j the average and the standard bias

of the jth column of X ′. Then the Principal Components (PCs) of stellar and normal galaxy
spectra, PM×M , can be obtained by calculating the eigenvectors of the covariance matrix of
the spectra matrix. In Fig. 4 the eigenvalues are plotted in decreasing order. Since a normalized
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spectrum (say X 1×M ) could be represented by the principal components in the form:

X 1×M =
M∑
i=1

aiP i×M , (3)

where, ai is the weight of spectrum X 1×M for the ith PC. In Fig. 5 the error of spectral
reconstruction with the reduced number of PCs is plotted. From the curves in Figs. 4 and 5,
we can find the reduced number of PCs that could reconstruct the spectrum within tolerable
limits. Since the first 50 PCs just have 1.48% reconstruction error, we choose them to define
a 50-dimensional subspace and map spectra to be separated on it to obtain 50-dimensional
vectors.

Fig. 4 Eigenvalue in decreasing order. Fig. 5 Spectral reconstruction error with re-
duced number of PCs.

4 SPECTRAL CLASSIFICATION WITH SMM-RBFNN

4.1 SMM-RBFNN

Input spectra are projected to the subspace defined by the q PCs (q = 50 in our case),
and then SMM-RBFNN is invoked for the final classification. As we know, BPNN (Gupta
et al. 1994; Coryn et al. 1998) has already had many applications on astronomical data
reduction. However, there are two main drawbacks in BPNN, one is its slow convergence
rate, and the other is that it sometimes falls into local minimum instead of global minimum.
The slow convergence rate will pose a computational problem, and local minima will degrade
the classification accuracy. To acquire better performances in both the training time and the
recognition accuracy, we propose a new method called SMM-RBFNN. In SMM-RBFNN, we
suppose the conditional probability function in our system as a mixture modeling (Webb 1999)
with the following form:

p(z|x,Θ) =
H∑

j=1

P (j)p(z|x,Θj) , (4)

x and z being the input and output vectors, (dimensions dx and dz) and Θ the parameter set.
H is the number of mixture components and P (j) is the jth weight of jth component, subject
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to P (j) ≥ 0,
H∑

j=1

P (j) = 1. Each component is assumed to be a Gaussian:

p(z|x,Θj) = G(z, gj(x,W), σ2
j ) , (5)

G(z, gj(x,W ), σ2
j ) =

1
(2πσ2

j )dz/2
exp

{
− 1

2σ2
j

||z − gj(x,W)||2
}

, (6)

where the map function gj(x,W) is assumed the RBFNN, whose components are written as:

gj,l(x,W) =
Kj∑
i=1

wl,iφi(||x− µi||) + wl,0

=
Kj∑
i=0

wl,iφi(||x− µi||), l = 1, · · · dz ,

(7)

where w(l,0) is a set of bias constants, φ0(||x− µi||) ≡ 1 and

φi(||x− µi||) = exp
[
− 1

2γ2
i

||x− µi||2
]
. (8)

In the present paper, all RBF are assumed to be Gaussian radial basis functions. From the
above formulation, our neural network is composed of H RBFNNs, and the jth RBFNN includes
kj RBF with the same or different center µi and variance γi. W denotes the weight matrix in
RBFNN. Given the learning samples D = {xn,zn}N

n=1, the cost function of system, which also
called the error function, can be written as:

E = −`(Θ) = −
N∑

n=1

ln p(zn|xn,Θ) = −
N∑

n=1

ln
H∑

j=1

p(j)p(zn|xn,Θj), (9)

where `(Θ) is the log-likelihood function of system, Θ is the parameter set {σ,W, γ, µ}.

4.2 EM-Like Learning Algorithm in SMM-RBFNN

Given the learning samples, the parameters in SMM-RBFNN classifier can be estimated
by maximizing the log-likelihood function. From Eq. (9), EM-like learning algorithm (Webb
1999; Guo & Xu 1999) could be derived with matrix differential calculus method (Magnus &
Neudecker 1999), which is described as the following steps:

E-step:
Fix up the parameter P (j)old and Θold, compute the variable h(j, n) according to the

following equation:

h(j, n) =
P (j)oldG(zn, gj(xn,Wold), (σ2

j )old)∑H
i=1 P (i)oldG(zn, gi(xn,Wold), (σ2

i )old)
. (10)

M-step:
Compute the new estimates of the parameters P (j)new and Θnew according to the following

formulae:

P (j)new =
1
N

N∑
n=1

h(j, n), (11)

Θnew = arg max{`(Θ)}. (12)
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Equation (12) can also be written as

Θnew
j = Θold

j + η∇`(Θ)|
Θ=Θold , (13)

which shows their Θnew is a correction of Θold along the gradients by a factor of η∇`(Θ).
More specifically, Eq. (13) can be expressed in term of each component {σ,W, γ, µ} as

(σ2
j )new = (σ2

j )old + η
∂`(Θ)
∂σ2

j

|
Θ=Θold , (14)

where η is a learning factor. The partial derivative of `(Θ) with respect to each parameter can
be obtained as

∂`(Θ)
∂σ2

j

=
N∑

n=1

h(j, n)

[
− dz

2σ2
j

+

∥∥zn − gj(xn,Wj)
∥∥2

2(σ2
j )2

]
, (15)

∂`(Θ)
∂(wi,l)j

=
N∑

n=1

h(j, n)

[
zn,l − gj,l(xn,W)

σ2
j

φi(||xn − µi||)

]
, (16)

∂`(Θ)
∂(µi,m)j

=
N∑

n=1

h(j, n)

{
1

2σ2
j

[zn − gj(xn,Wj)]T (wi)jφi(||xn − µi||)
[
xn,m − µi,m

2γ2
i

]}
, (17)

∂`(Θ)
∂(γ2

i )j
=

N∑
n=1

h(j, n)

{
1

2σ2
j

[zn − gj(xn,Wj)]T (wi)jφi(||xn − µi||)
[
||xn − µi||2

2(γ2
i )2

]}
, (18)

where the subscript j denotes the parameters in jth mixture component and wi = (wi,1, wi,2,

· · ·wi,dz ) is the vector in ith row of the weight matrix.
Applying the above EM-like algorithm to estimate the parameter in SMM-RBFNN, we then

build the classifier for separating stars from normal galaxies by their spectra.

4.3 Spectral Classification via SMM-RBFNN

We investigate the SMM-RBFNN for classifying stellar spectra from normal galaxies with
the architecture depicted in Fig. 6. The SMM-RBFNN consists of H RBFNNs of each is re-
garded as one component in the statistical mixture modelling. Figure 7 shows the jth RBFNN
architecture with Kj RBF nodes in the hidden layer, where j = 1, 2, . . . ,H and l = 1, 2, . . . , dz.
The input vector x is 50-dimensional, obtained by PCA and output z is 2-dimensional, denoting
the probabilities belonging to stars or normal galaxies, that are, dx = 50 and dz = 2.

With different numbers of RBF neurons, the RBFNN performs differently in the classifica-
tion of input samples and takes different statistical contribution to the final classifier. Therefore,
through the statistical mixture modeling with the classification results from H RBFNNs, we
could obtain a better classifier in separating stars from normal galaxies with unknown redshifts.
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Fig. 6 Architecture of SMM-RBFNN.

Fig. 7 jth RBFNN architecture with Kj RBF nodes (j = 1 . . . H, l = 1 . . . dz).

5 EXPERIMENTS AND RESULTS

In our experiments, the training data set for the SMM-RBFNN classifier includes 161 stellar
spectra and 240 simulated redshifted spectra of normal galaxies, as described in Sections 2.1
and 2.2. We use five RBFNNs in SMM-RBFNN whose RBF nodes are respectively set to 150,
200, 250, 300 and 360.

5.1 Initialization in SMM-RBFNN

The parameters in five RBFNNs include the variances γ2
j,i and centers µj,i(j = 1 . . . 5, i =

1 . . .Kj). We set γ2
j,i = 1 for all i, j, and obtain the µj,i by pre-clustering with K-means

algorithm (Bian & Zhang 1999). Then, the initial probabilities P (j) of the five RBFNNs in
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SMM are set to the average value of 0.2. The weight matrix Wj in the jth RBFNN is initialized
by

Wj
Kj×2 = (Φ−1

Kj×401)Z401×2, (19)

where Φj is the matrix of RBF nodes output in the jth RBFNN and Z is the expectation of
final output. The variance σ2

j can be set by

σ2
j =

1
401× 2

401∑
n=1

||Zn −
5∑

j=1

P (j)gj(xn,Wj)||
2

. (20)

5.2 Training and Testing Results

After setting the initial values in SMM-RBFNN, we apply the EM-like learning algorithm
to train the networks. The detailed steps are shown in Section 4.2. In our experiments the
training procedure terminates and reaches the extremum just after several loops and takes less
than a few seconds. The training results are partly shown in Table 1.

Table 1 A Part of Training Parameter Results of SMM-RBFNN

Parameter j = 1 j = 2 j = 3 j = 4 j = 5

P (j) 0.0345 0.0849 0.1984 0.3573 0.8624

σ2
j 0.0206 0.0206 0.0206 0.0206 0.0207

We used the test set with 227 stellar spectra and 861 SDSS spectra of normal galaxies with
average S/N ratio= 13, to test our classifier and obtained a correct recognition rate of 98.68%
and 96.52%. Using spectra with different S/N ratio, which are generated by adding Gaussian
noises on the standard spectra as described in Sections 2.1 and 2.2, the correct recognition rate
vs. SNR is plotted in Figs. 8 and 9. The curve in Fig. 8 is based on 388 noise-added stellar
spectra and that in Fig. 9 is based on 240 noise-added spectra of normal galaxies. The results
show that much higher correct recognition rates are obtained with the SMM-RFBNN.

Fig. 8 Correct recognition rate vs. SNR
(noise-added stellar spectra).

Fig. 9 Correct recognition rate vs SNR
(noise-added spectra of normal galaxies).
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6 CONCLUSIONS

Usually point sources can be separated from extended sources by the PSF test. However,
point-like sources are a possible mixture of galaxies, AGNs and stars. Therefore, the question
of separating stars from galaxies and AGNs by spectra automatically is not well settled. We
propose a new automated classification technique to separate stars from normal galaxies with
unknown redshift values via their spectra. By combining the method in this paper and in our
previous one about automated separation of non-active objects and active objects via spectra,
a complete solution of separating stars from galaxies or AGNs has been obtained.

In our proposed technique, first the PCA is adopted to reduce the dimension of spectra to
50 with a reconstruction error of 1.48%, then, the reduced inputs are feded to SMM-RBFNN
to separate stars from normal galaxies. By simulating redshifted spectra of normal galaxies,
we train the SMM-RBFNN classifier on a training set with different types and a large range
of redshift values. Since RBF parameter initialization using the K-means can approach the
optimal value, the EM-like learning algorithm can be applied in SMM-RBFNN to quickly reach
the extremum just after a few loops. Meanwhile, it is not necessary to use large numbers
of training data to reach the extremum of SMM-RBFNN. Experiments have shown that our
method can obtain a correct classification rate as high as 99.22% for standard stellar spectra,
and 96.52% for the SDSS spectra of normal galaxies with average SNR of 13. The experimental
results also show that our technique is robust and computationally efficient. Therefore it is
suitable for automated classification of voluminous spectra with low SNR from sky surveys.
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