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Abstract A new way of probing the large-scale structure of the universe is pro-
posed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells
are labelled “filled” or “empty” according as they contain galaxies or not. The cell
size is so chosen as to have nearly equal numbers of filled and empty cells for the
given galaxy sample. Two observables on each cell are definable: the number of
its like neighbors, n1, and a two-suffixed topological type τ , the suffixes being the
numbers of its like and unlike neighbor-groups. The frequency distributions of n1

and τ in the observed set of filled (empty) cells are then considered as indicators of
the morphology of the set. The method is applied to the CfA catalogue of galax-
ies as an illustration. Despite its limited size, the data offers evidence 1) that the
empty cells are more strongly clustered than the filled cells, and 2) that the filled
cells, but not the empty cells, have a tendency to occur in sheets. Further directions
of development both in theory and application are indicated.
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1 INTRODUCTION

This paper, hopefully, will open up a new line of research into the large scale morphology
of the universe by means of rhombic dodecahedron cells. In this first paper, I shall outline
some of the general principles, and, by way of illustration, apply the analysis to the CfA
Catalogue of Galaxies (Davis & Huchra 1982), to address the question of the shape of the
filled/overdense and empty/underdense regions of the universe. Further development, both in
theory and application, are being actively pursued, and hopefully will appear in print in the
near future. A much shorter, first draft of the present paper was published some 10 years ago
(Kiang 1993). The journal in which it appeared, however, had a rather limited circulation,
particularly so for researchers in China.

2 THE LARGE-SCALE MORPHOLOGY

The classic book on this subject is Hubble’s “The Distribution of the Nebulae” (Hubble
1936). In it the author articulated the thesis that the galaxies are the building blocks of the
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universe and that, at least as a first approximation or a working hypothesis, we should take
them as being statistically uniformly distributed in space. But the working hypothesis of an
authority has a tendency of persisting as a literal truth in the minds of the later researchers, and
it was not until the 1950s that Hubble’s idea of uniform distribution was seriously challenged.
The challenge came from two directions: on one hand, Neyman and Scott (1952, 1953b), using
statistical techniques based on counts-in-cells, showed that the galaxy distribution is statistically
clustered rather than statistically uniform, and on the other, Abell actually identified from
Palomar Sky Survey plates, 2712 operationally well-defined rich clusters of galaxies (Abell
1958). (Of course, Abell’s catalogue and its Southern extension have since acquired the status
of a classic database). The next step in the direction further away from the uniform distribution
was taken by myself (Kiang 1965, 1971): I applied the counts-in-cells technique to the Abell
clusters and found they themselves were clustered. This led me to the idea that galaxies may
be clustered on all scales. About the same time, Peebles began a different way of characterising
the galaxy distribution, a way which proved to be highly productive, namely, the calculation
of the two-point correlation function (Peebles 1978). The two-point correlation function is in
some sense a quantitative expression of my idea of indefinite clustering. As is well-known, the
calculation of the two-point correlation, and less often, of the three-point correlation function
has become something of an industry in the field of galaxy research. Among the large number
of applications, two of the more recent examples may be cited (Zhu 1997a, 1997b).

All the studies mentioned so far share the common belief that the galaxies are the basic
constituents of the universe, our exclusive concern when dealing with the question of the large-
scale morphology. This outlook seemed so natural. However, a glimpse of an alternative did
appear in a paper presented at the 1977 IAU Symposium in Tallinn (Joeveer & Einasto 1978),
tellingly entitled “Has the Universe the Cell Structure ?”. And it may not be coincidental
that, at the same symposium, Zel’dovich gave a paper on his well-known pancake theory of
galaxy formation (Zel’dovich 1978), for Zel’dovich’s theory would go hand in glove with a cell
structure. Since then, large voids or underdense regions and structures like the “Great Wall”
have become common knowledge. Thus, the idea dawned that voids may be as a fundamental
ingredient of the large-scale structure as are the galaxies.

The first paper that treated the underdense and overdense regions on an equal footing
was by Gott et al. (1986). These authors found (i) that the two regions are each a sponge-
like, connected entity, and (ii) that they are equivalent. I think that statement (i) is entirely
plausible, but to give statement (ii) any quantitative interpretation should perhaps await a more
penetrating analysis than what they did: they partitioned space into cubic cells and examined
the interface between the two regions. It is my belief that partitioning space into what I call
rhombic cells would provide a much more powerful means of analysis, and that the analysis
should not be confined to the interface, but should extend to all the constituent cells. I hope
the present paper will offer a first glimpse of the great richness that is inherent in the rhombic
cell analysis.

3 RHOMBIC CELL ANALYSIS

I imagine space is partitioned into cells the shape of rhombic dodecahedron. The latter can
be imagined to form in the following way: 1. Space is partitioned into identical cubes, and the
cubes are painted alternately black and white into a three-dimensional chessboard. 2. Each
white cube is cut into six identical pyramids with the faces as the bases and the centre as
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the common vertex. 3. To a given black cube, we stick on the six adjoining white pyramids.
The result: a solid with 12 identical white rhombic faces generated out of a black cube. I
shall call the black cube the generating cube of the dodecahedron. The size (volume) of the
dodecahedron is, of course, twice the size of its generating cube. The identical rhombic face has
its semi-minor diameter, semi-major diameter and sides in the ratios of 1:

√
2 :

√
3. More of the

geometry of the rhombic dodecahedron is given in the Appendix at the end of this paper. The
minor diameters of the 12 faces are just the 12 edges of the generating cube;—this one-to-one
correspondence was made use of in my construction of the Table 1 below.

Thus, space is partitioned into such 12-rhombic-faced cells. From now on, these cells will
simply be referred to as “rhombic cells”. An analysis of the CfA Catalog of Galaxies (Davis
& Huchra 1982) now follows, both for its own sake and as an illustration of the method: all
the definitions and arguments will equally apply to any other galaxy sample. If a rhombic
cell contains no CfA galaxies, then we call it an empty cell; otherwise, it is a filled cell.
The ensemble of the empty cells forms the empty region, and similarly the filled region. So
the question we are concerned with here is “Do the filled and empty regions have the same
morphology ?”, or more precisely, “granted that they are each a connected entity, do they
have the same mix of 1-dimensional string-like, 2-dimensional sheet-like, and 3-dimensional
clump-like contents ?”

3.1 Optimal Cell Size

Obviously, the question is at its most meaningful when the two regions have the same size,
for the morphology of a region clearly depends on its overall size. The size (volume) of the
individual cell when this happens will be called the optimal cell size, voptm. It is easily shown
that voptm always exists for any reasonably spread-out distribution of the galaxies. Suppose we
have a sample of N galaxies distributed throughout some volume of space V . We enclose each
galaxy in a small sphere, the result: N tiny spheres in a huge empty sea: the two ensembles
differ completely in morphology and size. Now let us keep on increasing the size of the spheres.
The spheres will begin and keep on coalescing, but independently of any merging, provided the
galaxies are reasonably spread out to start with, the total volume of the filled region, Vfilled region,
will keep on growing at the expense of the total volume of the empty region, Vempty region, and
we just stop the process when the two become equal. This demonstrates the “mathematical”
existence of voptm. Its practical evaluation can always be done by trial and error, but a good
starting value could be voptm = ln 2. (V/N) — the value that would result from a Poisson
distribution of the number of galaxies per cell.

3.2 Test Statistics

Here we come to the heart of the present analysis. The issue is, given an ensemble of filled or
empty cells, what observables or functions of observables of the individual cells can we identify
whose number distributions in the given ensemble can serve as probes of the morphology of
that ensemble ?

3.2.1 The Number of Like Neighbors n1

If two neighboring cells are both filled or both empty, then their common face will be called
an inner wall ; otherwise, an outer wall. Let, for a given cell, n1 be the number of its inner
walls (n1 = 0, 1, 2, · · · , 12). Now consider the frequency distribution or number distribution
of n1 for the whole filled region, N⊕(n1). Since we know the galaxies are not distributed in
space purely at random, we can expect N⊕(n1) to depart from the well-known binomial form.
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And the same is true for the similarly defined N©(n1) for the empty region. Each of the two
distributions of n1, then, reflects some non-random features of its own region, and it may be
reasonable to expect that any difference between their morphologies are in turn reflected in some
difference between the two distributions. However, it should be noted here that the difference
between the mean n1− values of the two regions, 〈n1〉⊕ − 〈n1〉©, tells us nothing about the
intrinsic morphologies, because any non-zero difference in the mean value will be entirely due
to accidental contributions from the “boundary” walls and to a departure from exact equality
between the numbers of filled and empty cells. (This statement can be easily proved starting
from the fact that an outer wall for a filled cell is also an outer wall for an empty cell, and that
the numbers of outer and inner walls of any cell must add up to 12). Thus, only differences
between N⊕(n1) and N©(n1) in respect of some parameters other than the mean value are
useful to us.

3.2.2 The Topological Type τm1,m2

Consider a cell with n1 inner walls and n2(= 12 − n1) outer walls. Adjacent inner walls
are said to form an inner wall group; similarly, an outer wall group. A cell with m1 inner wall
groups and m2 outer wall groups is then said to be of topological type τm1,m2 .

A single cell surrounded by 12 unlike neighbors is of type τ0,1. For further correlations, it
is convenient to adopt the following nomenclature. An agglomeration of like cells which is at
least 3-cells thick in at least one dimension will be called a thick clump. A string of single cells
is called a single strand, a sheet one cell thick, a mono-layer. A 2-cell-thick string is a 2-ply,
and a 2-cell-thick sheet, a double-layer. The following statements are then obvious: only the
inside cells of thick clumps are of type τ1,0; only the cells of single strands are of type τ2,1; only
the cells of mono-layers are of type τ1,2; while the boundary cells of thick clumps, and the cells
of double-layers and of 2-plys are all τ1,1. Thus, the number distribution of τ -types can only
give a rough indication of the mix of various types of objects. However, when the data is of
limited size, the univariate τ -distribution may be all that we can work with.

3.2.3 The Reference Bivariate (n1, τ) Distribution

As already mentioned, in the case of pure random distribution of filled and empty cells (ie,
when a given cell has an equal probability of on-half of being filled or empty), the univariate n1-
distribution is the binomial distribution with parameter one-half. The univariate τ -distribution
in the random case is, however, unknown and must be evaluated ab initio. While attempting
to do this, I realised that I could as easily evaluate the bivariate (n1, τ)-distribution at the
same time. And the latter may in any case be required when larger samples become available.
Distributions for the random case will be used as reference and will be labelled as such; this
particular bivariate distribution will be denoted by Nref(n1, τ).

My evaluation of Nref(n1, τ) was laborious. First, recalling the (1, 1)-correspondence be-
tween the cell faces and the edges of the generating cube, any mix of inner and outer walls of a
cell is equivalent to the same mix of two types of edges of a cube (type-1 for the inner, type-2
for the outer, say). Now, we must distinguish between a complexion and a configuration. A
complexion is any assignment of either 1 or 0 to each of the 12 edges (regarded as distinct or
labelled) of the cube. There are altogether 4096 (= 212) complexions. A configuration, on the
other hand, is any relative arrangement of the two types of edges on the cube. A configu-
ration generally corresponds to f complexions, with f taking the values, 4, 6, 8, 12, 16, 24,
48, 72, 96, with very different frequencies. Now, each configuration has a unique value of n1,
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and a unique τ -type. So the given configuration adds f to the frequency in the (n1, τ)-box.
Going through all the configurations results in the entire distribution Nref(n1, τ). And that
is all there is to it;—in principle. In practice, it is often difficult to be sure (1) that indeed
all configurations have been examined, and (2) that the configurations examined contained
no duplications. Another source of error lurks in the evaluation of f : all symmetries in the
given configuration must be noted and allowed for, otherwise f will be grossly overestimated. I
found the Schlegel diagram representation of the cube (a plane graph which preserves only the
topology of the cube) convenient for determining the τ -type of a given configuration, and the
“unfolded cube” (where the faces are opened out along common edges onto the same plane)
sometimes useful for checking whether a given configuration has not already been examined
and for recognizing any symmetry it might possess. Having now detailed the difficulties, I now
mention a welcome simplification: we need only evaluate for values of n1 between 0 and 6. This
can be shown as follows. Consider a (n1, τm1,m2) -configuration. By interchanging the inner
and outer walls (or the type-1 and type-2 edges) we obtain a (12− n1, τm2,m1) -configuration.
The two configurations have one and the same f -value, so this pair of “mirror configurations”
make the same contribution f to their respective (n1, τ)-boxes. But all the configurations can
be so paired off, hence we have, generally,

Nref(n1, τm1,m2) = Nref(12− n1, τm2,m1).

The result of my evaluation some 10 years ago is given in Table 1. I have recently repeated the
evaluation and confirmed the results.

I suggested to Mr Y. F. Wu (Wu Yongfeng) of the Center of Astrophysics, University of
Science and Technology of China, Hefei, that he might make an independent evaluation on the
computer. He wrote a program using the C language and duly verified the entire table. We can
now be confident that all the numbers given in Table 1 are correct.

Table 1 The Reference Bivariate Distribution Nref(n1, τ)

τ n1 Nref [τ ]

{m1, m2} 0 1 2 3 4 5 6 7 8 9 10 11 12

{1,1} 12 24 56 126 252 340 252 126 56 24 12 1280

{2,1} 42 120 252 336 160 24 934

{1,2} 24 160 336 252 120 42 934

{2,2} 12 72 240 72 12 408

{3,1} 44 96 72 212

{1,3} 72 96 44 212

{3,2} 36 12 48

{2,3} 12 36 48

{4,1} 6 6

{1,4} 6 6

{4,2} 3 3

{2,4} 3 3

{0,1} 1 1

{1,0} 1 1

Nref [n1] = 1 12 66 220 495 792 924 792 495 220 66 12 1 4096



100 T. Kiang

3.3 The Distance Effects

There are two distance effects due to properties inherent in astronomical surveys. First,
since every astronomical survey covers some region on the sky, we make the most efficient use of
the data when we line up our rhombic cells in fixed solid angles. This means that, in order that
all the cells have the same size (volume), their radial dimension must be inversely proportional
to the square of their distance. If we set the generating cube of the cell at some far, fiducial
distance to be more or less a cube, ie, with all its sides more or less equal, then as we move
closer, the generating cube will depart further and further from being a cube, its two transverse
dimensions each decreasing as the distance r, and its radial dimension increasing as r−2.

The second effect is due to the fact that, in respect of completeness, we can at best have
surveys complete to some apparent magnitude m. For the CfA Catalogue, m = 14.5. Then
suppose we consider only galaxies brighter than absolute magnitude –15.5 (which comprises
96% of all the galaxies in the CfA catalogue), then the catalogue is complete only up to distance
r = 10Mpc and is increasingly incomplete after that. The completeness factor at distance r,
(r > 10Mpc), is

s(r) =

∫ M(r) Φ(M)dM∫ −15.5 Φ(M)dM
, (1)

where
M(r) = 14.5− 5 log(r/Mpc)− 25, (2)

and Φ(M) is the adopted luminosity function of galaxies. Now, the number of CfA galaxies lying
within 10 Mpc is very small: to obtain results of any statistical significance we must include
those lying beyond, but in doing so, we must increase the cell size by s(r)−1 so as to maintain
the same mathematical expectation of the number of galaxies per cell. The two distance effects
together mean that the radial separation between the cell centres should vary as 1/(r2 s). And
there is some advantage in taking 10 Mpc as the fiducial distance, thus:

∆r = ∆r(r) = ∆r10 Mpc/[(r/10 Mpc)2s(r)] (3)

where ∆r10 Mpc is the value of ∆r at 10 Mpc, and is set equal to (∆voptm/2)1/3 and s(r) = 1
for r < 10Mpc, and is given by (1) for r ≥ 10Mpc. The advantage is that this way we get the
greatest number of least distorted cells.

In practice, of course, we may cut off our sample at some reasonable value of s, 0.2 or 0.1,
say.

3.3.1 The Boundary Effect

Because of the shape of the rhombic cell, we have cells with the property that, while their
centres lie inside the region covered by the data, parts of them lie outside. Such cells will be
called “boundary cells”. If a boundary cell is a filled cell, then we can be sure that it is a filled
cell, but if it is an empty cell, then we cannot be sure of its empty status without knowing
whether there are any galaxies in its outlying part. In either case we do not know the inner-
wall/outer-wall status of any “boundary faces” (faces that adjoin outside cells). It might be
suggested that we should simply discard all empty boundary cells, but this is not sufficient, for
the inner/outer status of the walls of any cell next to any one of them is still uncertain. So we
discard all cells next to any empty boundary cells as well. The result would be a very jagged
working region. This is generally undesirable, so we discard all the boundary cells, and all the
cells in the “next shell”: the consequent wastage might then prove unacceptable.
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There is a simple way out. Imagine the entire observed sample of galaxies is repeated
along the two transverse coordinate directions. Then, all the boundary cells will have a sure
empty/filled status, and all the boundary walls, a sure inner/outer status. Of course, some
spurious correlation will be introduced, but unless the region surveyed is exceptionally narrow,
the effect of any such correlation can be expected to be unimportant.

4 APPLICATION TO THE CfA CATALOGUE

For the luminosity function in Equation (1) I followed Davis & Huchra (1982) and took it to
be the Schechter function with α = −1.3 and M∗ = −19.4. Then after a few trials I found that
if we set ∆r10 Mpc = 2.2Mpc (the Hubble constant is set to be 100 km s−1 Mpc−1 throughout
this paper), then the northern sample of the CfA will give 262 empty and 248 filled cells, and
the southern sample, 55 empty and 65 filled cells. The combined sample would then give 317
empty and 313 filled cells;—probably as equal a pair as we could ever get.

Incidentally, the ratio in solid angle between the two samples is 0.83/1.83 = 0.45 (Davis &
Huchra 1982), but the ratio in the number of usable cells is only (55 + 65)/(262 + 248) = 0.24.
This is because the southern sample occupies an elongated strip in the sky and its poor return
is in spite of the fact that I had moved the origin of its equal-area projection to somewhere near
the middle of the strip.

Because of the limited size of the sample, results will be given only for the two marginal
distributions. Figure 1 displays the observed n1-distributions (the filled and empty ellipses)
against the reference n1-distribution (the histogram), and Fig. 2 displays similarly the observed
and reference τ -distributions.

Figure 1 shows that the two observed n1-distributions depart greatly from the binomial
form. This is not surprising since we know the galaxy distribution in space is clustered rather
than statistically uniform. But what is perhaps surprising is that the degree of clustering seems
to be higher in the empty region than in the filled region. This statement is based on the
following features not involving the mean value (cf. the caveat in 3.2.1): 1) The modal n1 is 8
for the empty region as against 7 for the filled region. 2) The fraction of cells with n1 = 10 for
the empty region is 8%, higher than the 5% for the filled region, while the fraction of cells with
n1 = 5 for the empty region is 10%, lower than the 14% for the filled region.

Figure 2 shows the following notable features. 1) The observed numbers of τ1,1-type cells
in both the empty and filled regions greatly exceed the random expectation, while the observed
numbers of τ2,2-, τ3,1-, τ1,3-type cells in both regions fall short of the random expectations.
Both these features are consistent with a tendency for likes to stick together for both filled and
empty cells. 2) That the observed number of τ1,1-type cells is higher in the empty than the
filled region is probable evidence for a greater clustering tendency in the former. However, in
view of the analysis of the τ1,1-type cell in 3.2.2, a firmer and more precise conclusion must
await an analysis of the array or conditional distribution N(n1|τ1,1). 3) Both regions tend
to avoid single strands (τ2,1-type cells). 4) The filled region, but not the empty region, seems
to have more τ1,2-type cells than random expectation: the galaxies, but not the voids, seem
to have a tendency of occurring in very thin sheets (mono-layers). This is a rather remarkable
result, and should certainly be checked further with larger size data.
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Fig. 1 Frequency distributions of the number of
like neighbours n1 for filled cells (filled ellipses) and
empty cells (larger, unfilled ellipses). The histogram
is the reference (binomial) n1-distribution of Table
1, normalized to the mean observed total, 315.

Fig. 2 Marginal distributions of the topologi-
cal type τ (part only). Symbols have the same
meaning as in Fig. 1 and the histogram is the
reference τ -distribution of Table 1 normalized
to a total of 315.

5 PROSPECTS OF FURTHER DEVELOPMENT

There is great scope for development both in the theory of rhombic cell analysis and in its
applications.

Much larger survey results than the CfA Catalogue are now available. To each of these, we
can, of course, apply the present method of analysis. But more than that, we can refine the
analysis in two ways:

1. Recall that, because of the small size of the CfA Catalogue, I had to include the more
distant regions where the catalogue is incomplete, by the device of increasing proportionately
the size of the cells (Section 3.1). But this procedure implicitly assumes that the morphology in
the near space on a certain standard scale (the optimal cell size) is the same as the morphology
in the far space at larger and varying scales. When much larger datasets become available, we
might be able to investigate the near and far regions separately, thus instead of making the
assumption that the morphology is scale invariant, we actually investigate it.

2. Again, because of the limited sample size, this paper only examined the two marginal
distributions n1 and τm1,m2 . When the sample is sufficiently large, we can examine the condi-
tional distributions of n1 at a given τ . The conditional distribution of n1 at τ1,1 is of particular
interest: it is by far the largest of all such conditional distributions, hence most amenable to a
finer analysis, and by its analysis we may be able to estimate what fraction of the large number
of τ1,1-type cells comes from what source, thick clumps, double-layers or 2-plys. It would be
most interesting if the double-layer turns out to be a favorite form for the filled region, since
we already seem to have evidence that the mono-layer is so (see end of Section 4).
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As regards theoretical development, there is a completely new dimension to be explored.
The present analysis is of cells considered as individuals. Now, for each cell there is a natural
definition of its (like) neighbors of ranks 1, 2, 3, etc. And there should be many powerful test
statistics based on the properties of entire neighborhoods of various ranks. But even within the
field of individual cells, we can (i) raise the threshold for the filled cell to 2 or more galaxies,
so that the resulting filled and empty regions will be closer to being underdense and overdense
regions, and (ii) search for new test statistics besides n1 and τm1,m2 .

Of course, any one of the theoretical developments could be applied to any one of the new
datasets, and conversely each new application could suggest new additions to the store of test
statistics. The scope for development is very great indeed.
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APPENDIX

Geometry of the Rhombic Dodecahedron

This Appendix lists some of the regular and semi-regular properties of the rhombic do-
decahedron. The dodecahedron has 12 identical rhombic faces. Figure A1 shows the linear
dimensions of the rhombic face, in units of its semi-minor diameter. The 12 minor diameters
of the dodecahedron coincide with the 12 edges of its generating cube. The dodecahedron has
six 4-vertices (where 4 faces meet) corresponding to the six face-centres of the generating cube,
and eight 3-vertices (the eight corners of the generating cube).

Figure A2 is the apparent view of the dodecahedron seen from its centre. The 12 faces
each subtends a solid angle of π/3, each has four sides of 54.7◦, a major diameter of 90◦and
a minor diameter of 70.5◦. The arrangement of the faces can be described as follows. Choose
any pair of opposite 4-vertices as north and south poles, then four faces meet side-by-side at
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the north pole, four at the south pole and four lie length-wise along the equator. A given face
has four neighbors. With respect to the centre of a given face, the centres of its four neighbors
are all 60◦away, but they are not isotropically placed: the directions to two neighbors sharing
a 3-vertex with the given face include an angle of 70.5◦, while the directions to two neighbors
sharing a 4-vertex, one of 109.5◦.
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