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Abstract Exact solutions for a model with variable G, Λ and bulk viscosity are
obtained. Inflationary solutions with constant (de Sitter-type) and variable energy
density are found. An expanding anisotropic universe is found to isotropize during
its expansion but a static universe cannot isotropize. The gravitational constant is
found to increase with time and the cosmological constant decreases with time as
Λ ∝ t−2.

Key words: cosmology: theory — cosmological parameters

1 INTRODUCTION

In a recent paper, Kalligas, Wesson & Everitt (1995) have investigated a flat model with
variable gravitational (G) and cosmological (Λ) “constants”. Along the same line, Singh et al.
(1998) have considered a viscous cosmological model with variable G and Λ. They considered
a different energy conservation law from that of Arbab (1997) but, they have found similar
solutions as in (Arbab 1997). Very recently, we have studied the Bianchi type I model and
have shown that the universe isotropizes in the course of expansion (Arbab 1998). With a
similar approach, we wish to study the effect of anisotropy in the universe with the energy
conservation advocated by Singh et al. where G and Λ vary with time. We also have shown
that the introduction of bulk viscosity has enriched present study of cosmology.

Kalligas et al. have found solutions for a static universe with zero total energy density while
G and Λ are allowed to vary with time. However, their solution does not seem to be physically
sensible, since one does not expect G to vary with time in an empty universe!

In the present case, we show that the static universe must be empty and must have a
vanishing cosmological constant (Λ) and bulk viscosity (η). We have also shown that the
presence of viscosity helps an anisotropic universe to isotropize during expansion. We also
obtained solutions with constant and variable energy density that correspond to either static or
inflationary universe. We remark that these solutions do not hold for our earlier work (Arbab
1998). The gravitational constant is found to increase with time. For a universe in balance
(flat), expansion must accelerate in order to overcome future collapse. The present observed
acceleration of the universe is justified in the present models.
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2 SOLUTIONS FOR THE ISOTROPIC UNIVERSE

In a flat Robertson Walker metric

ds2 = dt2 −R2(t)(dr2 + r2dθ2 + r2 sin θ2dφ2). (1)

Einstein’s field equations with a time-dependent G and Λ read (Weinberg 1971)

Rµν − 1
2
gµνR = 8πG(t)Tµν + Λ(t)gµν . (2)

Variation of the gravitational constant was first suggested by Dirac (1937) in an attempt to
understand the appearance of certain very large numbers, when atomic and cosmic worlds are
compared. He postulated that the gravitational constant (G) decreases inversely with cosmic
time. On the other hand, Einstein introduced the cosmological constant (Λ) to account for a
stable static universe, as appeared to him at the time. When he later knew of the universal
expansion he regretted its inclusion in his field equations. Now cosmologists believe that Λ is
not identically, but very close to zero. They relate this constant to the vacuum energy that first
inflated our universe, causing it to expand. From the point of view of particle physics, a vacuum
energy could correspond to a quantum field that is diluted to its present small value. However,
other cosmologists dictate a time variation of this constant in order to account for its present
smallness. The variation of this constant could resolve some of the standard model problems.
Like G, the constant Λ is a gravity coupling and both should therefore be treated on an equal
footing. A proper way in which G varies is incorporated in the Brans-Dicke theory (Brans &
Dicke 1961). In this theory G is related to a scalar field that shares the long range interaction
with gravity. In the literature Λ takes several forms of variation, Λ ∝ R−2, Λ ∝ H2, Λ ∝ 8πGρ,
etc., based on different reasonings (Overdin & Cooperstock 1998 ; Sahni & Starobinsky 1999).
In the present work, we allow the variation of G to be cancelled by the variation of Λ (Beesham
1986; Abdel Rahman 1990; Pande 2000; Bonanno & Reuter 2002).

Considering the imperfect-fluid energy momentum tensor

Tµν = (ρ + p∗)uµuν − p∗gµν , (3)

Equation (2) yields the two independent equations,

3

(
R̈

R

)
= −4πG(3p∗ + ρ) + Λ , (4)

and

3

(
Ṙ

R

)2

= 8πGρ + Λ . (5)

Elimination of R̈ between (4) and the differentiated form of Eq.(5) gives

3(p∗ + ρ)Ṙ = −
(

Ġ

G
ρ + ρ̇ +

Λ̇
8πG

)
R , (6)

where a dot denotes differentiation with respect to time t and p∗ = p − 3ηH, η being the
coefficient of bulk viscosity, H the Hubble constant. The equation of state relates the pressure
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(p) and the energy density (ρ) of the cosmic fluid:

p = (γ − 1)ρ , (7)

where γ = constant. Vanishing of the covariant divergence of the Einstein tensor in Eq.(2) and
the usual energy-momentum conservation relation (Tµν

;ν = 0) lead to

8πĠρ + Λ̇ = 0 , (8)

and
ρ̇ + 3(p∗ + ρ)H = 0 , (9)

or
ρ̇ + 3(p + ρ)H = 9ηH2 . (10)

We see that the bulk viscosity appears as a source term in the energy conservation equation.
Hence the RHS of Eq.(10) would correspond to the rate of thermal energy generated due to
the viscosity. This may help solve the generation of entropy in the universe associated with the
standard model of cosmology.

In this paper we will consider the very special form (Arbab 1997),

Λ = 3βH2, β = const. , (11)

and
η = η0ρ

n, η0 ≥ 0, n = const. (12)

We have shown very recently that Eq.(11) is equivalent to writing Λ as Λ =
(

β
β−3

)
4πGρ for

a non-viscous model (Arbab 2002). This form is interesting since it relates the vacuum energy
directly to the matter content in the universe. Hence, any change in ρ will immediately imply
a change in Λ, i.e., if ρ varies with the cosmic time then Λ also varies with the cosmic time.

In what follows we will discuss the solution of the model equations for an isotropic universe
and for an anisotropic universe with the above prescription for Λ and η.

2.1 Solution with Constant Energy Density

One can satisfy Eq.(10) with a constant energy density (ρ = const) with:
(i) H = 0, which implies a static universe.
(ii) η = η0ρ (i.e. n = 1), H = γ

3η0
= const. The solution of this equation is of the form

R = const. exp(Ht). We remark here that the classical inflation with an equation of state p = −ρ

is not permitted in this model.

2.2 Solution with Variable Energy Density

Inflationary solution with variable energy density
Consider the bulk viscosity to have the form η = η0ρ (i.e., n = 1). With H = H0 < γ

3η0
, we

have R = const. exp(H0t) so that Eq.(10) yields a decaying mode of the energy density given
by

ρ = F exp−3H0(γ − 3η0H0)t , F = const. (13)

Now consider the case β = 1. Equations (5), (8) and (11) yield

Λ = const. , G = 0 . (14)
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We remark that this solution is not possible within the framework of the conventional inflation-
ary models. It is however remarked by Abdel Rahman (1990) that a possible interpretation of
Eq.(14) is that the universe came to being just prior to the onset of gravity at t = 0 as a result
of a vacuum fluctuation propelled by the repulsive effect of the positive cosmological constant.

3 SOLUTIONS FOR AN ANISOTROPIC UNIVERSE

For the Bianchi type I metric

ds2 = dt2 −R2
1dx2 −R2

2dy2 −R2
3dz2 , (15)

with an imperfect-fluid energy momentum tensor, Einstein’s field equations yield (Arbab 1998)

Ṙ1Ṙ2

R1R2
+

Ṙ1Ṙ3

R1R3
+

Ṙ2Ṙ3

R2R3
= −8πGρ− Λ , (16)

Ṙ1Ṙ2

R1R2
+

R̈1

R1
+

R̈2

R2
= 8πGp∗ − Λ , (17)

Ṙ1Ṙ3

R1R3
+

R̈1

R1
+

R̈3

R3
= 8πGp∗ − Λ , (18)

Ṙ2Ṙ3

R2R3
+

R̈2

R2
+

R̈3

R3
= 8πGp∗ − Λ , (19)

and

8πĠρ + Λ̇ + 8πG

[
ρ̇ + (ρ + p∗)

(
Ṙ1

R1
+

Ṙ2

R2
+

Ṙ3

R3

)]
= 0 . (20)

From Eqs.(16)–(20) one obtains

R̈1

R1
+

R̈2

R2
+

R̈3

R3
= 4πG(ρ + 3p∗)− Λ , (21)

where p∗ = p− 3ηH. The energy conservation (Tµν
;ν = 0) implies that

ρ̇ + 3H(ρ + p∗) = 0 , (22)

or
ρ̇ + 3H(ρ + p)− 9ηH2 = 0 . (23)

Here we define the average scale factor R by R ≡ (R1R2R3)1/3 so that

H =
Ṙ

R
=

1
3

(
Ṙ1

R1
+

Ṙ2

R2
+

Ṙ3

R3

)
. (24)

Using Eqs.(22) and (24), Eq.(20) yields

Λ̇ + 8πĠρ = 0 . (25)

Let us now assume that the energy density is given by the power law

ρ = Atm, A = const. , m = const. , (26)
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and the average scale factor is

R = Btα, α = const. , B = const. (27)

Substituting Eqs.(26) and (27) in (23), (11) and (25) one obtains

ρ = At−1/(1−n) , (28)

Λ = 3αβt−2 (29)

G =
3βα2(1− n)
4πA(2n− 1)

t(2n−1)/(1−n) , n 6= 1
2

, 1 (30)

and the condition m = −1
1−n . For physical significance G > 0, so n > 1

2 . This implies that the
gravitational constant is an ever-increasing function of time. Consequently, for a flat (balanced)
universe the expansion must increase (accelerate) in order that the universe can remain in
balance. Thus, the present observed acceleration of the universe may be attributed to this ever
growing gravity instead of invoking any exotic matter.

We now consider the anisotropy energy (σ) defined by

8πGσ =

(
Ṙ1

R1
− Ṙ2

R2

)2

+

(
Ṙ1

R1
− Ṙ3

R3

)2

+

(
Ṙ2

R2
− Ṙ3

R3

)2

. (31)

Using Eqs.(5), (16) and (24), the above equation becomes

8πGσ = 18

(
Ṙ

R

)2

+ 48πGρ + 6Λ . (32)

We see that the anisotropy energy (σ) becomes

8πGσ = Dt−2, D = const. , (33)

a result that has been obtained by Arbab (1998).

3.1 Constant Energy Solution

Using Eq.(12), Eq.(23) can be written in the form

ρ̇ + 3γHρ = 9η0ρ
nH2 . (34)

Now consider the following two cases:
(i) Static universe ( H = 0 , R = const.)
The above equation yields ρ = const., and Eqs.(11) and (25) yield Λ = 0 and G = const.

It follows from Eqs. (5) and (32) that the anisotropy energy σ = 0. It is shown by Kalligas et
al. (1995) that a static universe can only be isotropic, i.e., σ = 0 . However, a static universe
with a constant energy density can not exist unless G = 0, as is evident from Eq.(5). Hence,
only an empty static universe can exist. We remark here that the claim made by Kalligas et al.
that a universe with a vanishing total energy density has G and Λ vary with time is physically
nonsensical.

(ii) Inflationary universe with constant energy density (ρ = const. , H = const., n = 1)
H = H0 = const. implies R = const. exp(H0t). Equation (34) gives H0 = γ

3η0
.

Hence, Eqs.(11), (25) and (32) give Λ = const., G = const. and σ =
(

9H2
0

2πG

)
=

(
γ2

2πη2
0G

)
, whether

Λ = 0 or not.



118 Arbab I. Arbab

4 CONCLUSIONS

In this paper, we have studied both isotropic and anisotropic models with variable G, Λ
and bulk viscosity. We found that energy conservation is guaranteed provided the three scalars,
G, Λ and η conspire to satisfy it. We also found that a constant energy density would lead to
either a static or inflationary universe. We argued that the classical inflation of an equation
of state p = −ρ is not permitted. Inflationary solutions with constant and variable energy
density are found. These solutions are influenced by the presence of the bulk viscosity. Such
a solution is triggered by the presence of the bulk viscosity alone. An initially expanding
anisotropic universe is found to isotropize as it evolves. However, a static empty universe must
be isotropic. This may explain why the present universe is highly isotropic. Finally, we have
found that the gravitational constant increases with time in radiation-dominated (γ = 4

3 ) and
matter-dominated (γ = 1) epochs. The present observed acceleration of the universe may
be interpreted as due to a balance between expansion and gravity. Moreover, since gravity
increases expansion must accelerate!
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