
Chin. J. Astron. Astrophys. Vol. 3 (2003), No. 2, 183–190

( http://www.chjaa.org or http://chjaa.bao.ac.cn )
Chinese Journal of
Astronomy and
Astrophysics

Learning Vector Quantization for Classifying Astronomical
Objects ∗

Yan-Xia Zhang and Yong-Heng Zhao

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012;
zyx@lamost.bao.ac.cn; yzhao@lamost.bao.ac.cn

Received 2002 June 28; accepted 2002 October 8

Abstract The sizes of astronomical surveys in different wavebands are increas-
ing rapidly. Therefore, automatic classification of objects is becoming ever more
important. We explore the performance of learning vector quantization (LVQ) in
classifying multi-wavelength data. Our analysis concentrates on separating active
sources from non-active ones. Different classes of X-ray emitters populate distinct
regions of a multidimensional parameter space. In order to explore the distribution
of various objects in a multidimensional parameter space, we positionally cross-
correlate the data of quasars, BL Lacs, active galaxies, stars and normal galaxies
in the optical, X-ray and infrared bands. We then apply LVQ to classify them with
the obtained data. Our results show that LVQ is an effective method for separating
AGNs from stars and normal galaxies with multi-wavelength data.
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1 INTRODUCTION

With the vast amounts of data resulting from large digital sky surveys and archives, data
measured in terabytes, and soon in petabytes, now becoming available, efforts are being made
to develop algorithms for automatic classification. The advantages of automated procedures
as compared to manual classification are obvious. Only a few experts are able to perform
accurate manual classification, and it was therefore sought to “freeze” this expert knowledge
into computer programs. Such programs would allow us to obtain objective classification by
quantitative criteria, and handle much larger data sets. The latter issue has become ever
more demanding, with ongoing and upcoming survey missions like SDSS, 2MASS, DPOSS, and
LAMOST, etc. Hence, there is need for tools that provide efficient and robust methods of
automatic classification of all detected objects.

A large amount of work has been dedicated to automatic object classification. Neural
networks (NNs), over the years, have proven to be a very powerful tool capable of extracting
reliable information and patterns from large amounts of data even in the absence of a model
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describing the data (cf. Bishop 1995) in a wide range of applications: catalogue extraction
(Andreon et al. 2000), star/galaxy classification (Odewahn et al. 1992; Naim et al. 1995;
Mähönen & Hakala 1995; Bertin & Arnout 1996; Bazell & Peng 1998), galaxy morphology
(Storrie-Lombardi et al. 1992; Lahav et al. 1996), classification of stellar spectra (Bailer-
Jones et al. 1998; Allende et al. 2000; Weaver 2000). Recently an important and promising
contribution was introduced by Andreon et al. (2000), covering a large number of neural
algorithms.

Mähönen & Hakala (1995) also took a new approach to classification. They used a Kohonen
self-organizing map (SOM), which is an unsupervised learning method, to distinguish images of
stellar objects, nonstellar objects, and background. Two advantages of their approach are that
the method is unsupervised and that it does not require data preprocessing. Now, supervised
learning methods typically give better results than unsupervised methods. In this paper, we
introduce a supervised neural network called learning vector quantization (LVQ) to classify
multi-wavelength data, which is a supervised variation of the Kohonen self-organizing map
(SOM), and of which Bazell & Peng (1998) pioneered applications in astronomy. LVQ shares
the same network architecture as SOM, although it uses a supervised learning algorithm.

2 LEARNING VECTOR QUANTIZATION

Classification and pattern recognition are important and challenging issues in efficient anal-
ysis of large astronomical databases and will become even more important with the development
of the International Virtual Observatory (IVO). Neural networks (NNs) classifiers have proved
to be strong competitors in this field and especially in the discrimination of astronomical objects.
The adopted learning vector quantization (LVQ) algorithm here is based on the LVQ PAK rou-
tines developed at the Laboratory of Computer and Information Sciences, Helsinki University
of Technology, Finland. The software can be obtained from www.cis.hut.fi/research/lvq pak/.

According to learning process, neural networks are divided into two kinds: supervised and
unsupervised. The difference between them lies in how the networks are trained to recognize
and categorize the objects. In the unsupervised method, samples are input into the network
and the network must determine the correlations between the objects and produce an output
in the correct class for each input object. In essence, the unsupervised algorithm must have
some internal means of differentiating objects in order to classify them. On the other hand,
with the supervised learning method, the network is given input samples from a training data
set, along with the current classification of each sample, and produces an output signifying its
best guess for the classification of each input object. The network compares its output with
the correct, or target output which was specified by the user along with the input data. The
network then adjusts its internal components (connection weights) to make its output agree
more closely with the target output. In this way the network learns the correct classification
of its training data set. The network can then be presented with a test data set consisting of
objects which it has never known, and its performance can be evaluated.

Learning vector quantization was also developed by Kohonen (1989) and is based on the
self-organizing map (SOM) or Kohonen feature map (Kohonen 1989, 1990). SOM performs a
mapping from an n-dimensional input vector onto a two-dimensional array of nodes usually
displayed in a rectangular or hexagonal lattice. The mapping is performed in such a way as to
preserve the topology of the input data. This means that input vectors, that are similar to each
other in some sense, are mapped to neighboring regions of the two-dimensional output lattice.



Learning Vector Quantization for Classifying Astronomical Objects 185

Each node in the output lattice has an associated n-dimensional reference vector of weights,
one for each element of the input vector. In an abstract sense, the SOM functions compare
the distance, in some suitable form, between each input vector and each reference vector in an
iterative manner. With each iteration, the reference vectors are moved around in the output
space until their positions converge to a stable state. When the reference vector that is closest
to a given input vector is found (the winning reference vector), the reference vector is updated
to more closely match the input vector. This is just the learning step.

LVQ uses the same internal architecture as SOM: a set of n-dimensional input vectors is
mapped onto a two-dimensional lattice, and each node on the lattice has an associated n-
dimensional reference vector. The learning algorithm in LVQ, i.e., the method of updating the
reference vectors, is different from that in SOM. Because LVQ is a supervised method, during
the learning phase the input data are tagged with their correct class and each output neuron
represents a known category. We define the input vector x as

x = (x1, x2, x3, · · · , xn) ,

and the reference vector for ith output neuron ωi as

ωi = (ω1i, ω2i, ω3i, · · · , ωni) .

Define Euclidean distance between the input vector and the reference vector of the i neuron as

D(i) =

√√√√
n∑

j=1

(xj − ωji)2 .

When D(i) is a minimum, the input vectors are compared to the reference vectors and the
closest match is found. The winning reference vector, ωi∗ is then obtained by the formula

| ωi∗ − x |≤| ωi − x | .

The reference vectors are then updated using the following rules:

ωi∗(new) = ωi∗(old) + α(t)(x− ωi∗(old)) if x is in the same class as ωi∗ ,

ωi∗(new) = ωi∗(old)− α(t)(x− ωi∗(old)) if x is in a different class from ωi∗ ,

ωi∗(new) = ωi∗(old) if i is not the index of the winning reference vector.

The learning rate 0 < α(t) < 1 should generally be made to decrease monotonically with time,
with large changes in early iterations and more fine tuning as convergence is approached. There
are several versions of the LVQ algorithm for which the learning rules differ in some details,
see Kohonen (1995) for an explanation of the differences between these algorithms. When the
learning phase is over, the reference vectors can be frozen, and any further inputs to the system
will be placed into one of the existing classes, but the classes will not change.

3 CHOSEN SAMPLE AND PARAMETERS

The ROSAT Bright Source (RASS/BSC; Voges et al. 1999) contains positions, X-ray count
rates, and spectral information of 18 811 X-ray sources with count rates greater than 0.05
counts s−1, observed during the ROSAT All-Sky-Survey (RASS). Similarly, the ROSAT Faint
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Source (RASS/FSC) includes 105 924 sources. A catalogue of quasars and active nuclei (Véron-
Cetty & Véron, 2000) which is an updated version of the catalogue of quasars and active nuclei
(Véron-Cetty & Véron, 1998), contains 13 214 quasars, 462 BL Lac objects and 4428 active
galaxies (of which 1711 are Seyfert 1s).

We perform positional cross-correlation of the catalogue of quasars and active nuclei with
the ROSAT Bright Source Catalog (RASS/BSC) and Faint Source Catalog (RASS/FSC) X-ray
sources in a search radius of 3 times their positional error, and then cross-identify the result
with optical sources in the USNO A-2.0 catalog within 5 arcsec radius. After crossing out the
one-to-many sources, the number of quasars, BL Lac objects and active galaxies reduces to
2272, 336, 1483, respectively. Similarly, using these sources to positionally cross-match 2MASS
released data within 10 arcsec radius, after crossing out the one-to-many sources we obtained 909
quasars, 135 BL Lacs and 612 active galaxies. Likewise, we took stars from SIMBAD database
and galaxies from Third Reference Catalogue of Bright Galaxies (RC3; de Vaucouleurs et al.
1991) to obtain a dataset of 9967 stars and 484 normal galaxies from optical and X-ray bands,
and 3718 stars and 173 normal galaxies from optical, X-ray and infrared bands. For clarity, the
adopted samples and corresponding catalogs are listed in Table 1. The chosen parameter,

Table 1 Sample and Catalogue

Class of objects Sample Size Catalogue

Quasars 909 1a

BL Lacs 135 1a

Active galaxies 612 1a

Stars 3718 2b

Normal galaxies 173 3c

1a is the catalogue of quasars and active nuclei

(Véron-Cetty & Véron, 2000).

2b is SIMBAD database.

3c is Third Reference Catalogue of Bright Galax-

ies (RC3; de Vaucouleurs et al. 1991).

definition, catalogue and waveband are
summarized in Table 2. The chosen pa-
rameters from different bands to classify
objects are B − R (optical index), B +
2.5 log (ct), ct (source count-rate in the
broad energy band), HR1 (hardness ratio
1), HR2 (hardness ratio 2), ext (source ex-
tent), extl (likelihood of the source extent),
J−H (infrared index), H−K (infrared in-
dex), J + 2.5 log (ct). The mean values of
the parameters for all types of objects are
presented in Table 3.

Table 2 Chosen Parameter Summary

Parameter Definition Catalogue Waveband

B blue magnitude USNO-A2.0 optical band

R red magnitude USNO-A2.0 optical band

ct source countrate in the broad energy band RASS/BSC,RASS/FSC X-ray band

HR1 hardness ratio 1 RASS/BSC,RASS/FSC X-ray band

Definition: hr1 = (B–A)/(B+A), where

A=countrate in PHA range 11–41

B=countrate in PHA range 52–201

HR2 hardness ratio 2 RASS/BSC,RASS/FSC X-ray band

Definition: hr2=(D–C)/(D+C), where

C=countrate in PHA range 52–90

D=countrate in PHA range 91–201

ext source extent RASS/BSC,RASS/FSC X-ray band

extl likelihood of source extent RASS/BSC,RASS/FSC X-ray band

J J band photometry 2MASS infrared band

H H band photometry 2MASS infrared band

K K band photometry 2MASS infrared band
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Table 3 Mean Values of Parameters for the Sample

Parameters Quasars BL Lacs Active galaxies Stars Galaxies

B −R 0.11±0.51 0.78±0.91 0.78 ±0.89 –1.53±4.19 1.42±1.49

B + 2.5 log (ct) 13.87±1.09 15.18±1.57 13.02±2.40 4.18±5.33 7.95±2.40

ct 0.13±0.30 0.45±0.75 0.25±0.47 0.12±0.42 0.08±0.13

HR1 0.03±0.54 0.23±0.46 0.16±0.51 0.09±0.53 0.65±0.37

HR2 0.14±0.45 0.17±0.32 0.14±0.36 –0.02±0.54 0.22±0.48

ext 5.06±8.80 10.08±11.61 7.26±9.68 4.21±9.72 16.11±32.12

extl 1.15±4.49 5.38±15.23 2.20±5.83 1.05±6.74 7.81±31.15

J −H 0.68±0.27 0.75±0.14 0.79±0.15 0.02±15.97 0.76±0.17

H −K 0.79±0.31 0.70±0.17 0.75±0.23 –1.22±21.34 0.37±0.19

J + 2.5 log (ct) 12.87±0.96 13.54±1.42 12.54±1.53 –7.30±33.34 9.75±1.54

As shown by Table 3, different objects show different properties in different bands. There-
fore it is reasonable to classify the objects with these parameters. To determine the best
combination of parameters to discriminate between AGNs, stars and galaxies, we have probed
a ten-dimensional space. With a principal component analysis, we found that a simple or
weighted combination of the attributes forming a “super” attribute is not optimal. As a result,
we may apply learning vector quantization (LVQ) more effectively and combine all or at least
most of the attributes.

4 RESULTS

Taking the sample from optical, X-ray and infrared bands as the training set and the test
set, we classify the sample into five classes by means of LVQ. Table 4 summarizes the classified
result. The fractions of correct classification of quasars, BL Lacs, active galaxies, stars and
normal galaxies are 84.2%, 31.1%, 60.8%, 97.3%, 65.9%, respectively. For the whole sample, the
fraction is 88.5%. The results for quasars and stars are better than for the rest. Comparatively,
the accuracies for BL Lacs, active galaxies and normal galaxies are low. In optical, X-ray and
infrared bands, BL Lacs are hard to separate from quasars and active galaxies, simultaneously,
active galaxies are not obviously different from quasars, while normal galaxies evidently differ
from stars in that they are redder in the infrared band. Let “active objects” include quasars,
BL Lacs and active galaxies and “non-active objects” include stars and normal galaxies. Then,
as Table 4 shows, among 1656 active objects 40 or 2.4% are misclassified as non-active objects;
among 3890 non-active objects, 116 or 3.0% are misclassified as active objects. Obviously,
active objects can be separated from non-active objects in the three bands.

Table 4 Classified Result for the Multi-class Problem

Known

Classified Quasars BL Lacs Active galaxies Stars Galaxies

Quasars 765 48 186 25 1

BL Lacs 20 42 19 10 2

Active galaxies 121 44 372 40 38

Stars 3 0 13 3616 18

Galaxies 1 1 22 27 114

Accuracy 84.2% 31.1% 60.8% 97.3% 65.9%
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Since Table 4 shows that active objects apparently differ from non-active objects, we divide
the sample into two parts: 1656 active objects and 3891 non-active objects. Then we apply
LVQ to classify them. The sample acts as both the training set and the test set. The result
is given in Table 5. The final accuracy is 97.6% for active objects and 97.1% for non-active
objects. For the whole sample, the accuracy is 97.3%.

Table 5 Classified Result for the Two-Class Problem

Known

Classified Active sources Non-active sources

Active sources 1617 112

Non-active sources 39 3778

Accuracy 97.6% 97.1%

Now, we divide the sample in two parts, one of which is used as the training set, the other,
the test set. The result of classification with LVQ is shown in Table 6. The accuracy of active
objects is 96.0% and that of non-active objects is 96.1%. Among 2773 of the test sets, the
number of correct classification is 2664, or 96.1%, the number of misclassifications is 109 or
3.9%. In order to further validate the effectiveness of LVQ, we used the data of Wei et al.
(1999) and Xu et al. (2001) as test sets. By positional cross-correlation with the catalogues
USNO-A2.0, RASS/BSC, RASS/FSC and 2MASS, we obtained 15 Seyfert galaxies, 12 quasars
and two stars. By means of the LVQ, one Seyfert galaxy and two stars were misclassified. So
the accuracy is 89.7%.

Table 6 Classified Result Using the Separated Sample

for the Two-class Problem

Known

Classified Aactive sources Non-active sources

Active sources 795 76

Non-active sources 33 1869

Accuracy 96.0% 96.1%

5 DISCUSSION

The methods of selecting quasar candidate employed by previous surveys include selections
by radio, color, slitless spectroscopy, X-ray and infrared sources, variability, or zero proper
motion. However, the main drawback of radio selection is that most, if not all, radio-quiet
quasars cannot be included in the sample. So the sample cannot be representative of the quasar
population as a whole. The color selection and slitless spectroscopy selection are efficient, but
they both suffer significant selection effects. Now, strong X-ray emission has been found to
be nearly the defining characteristic of AGNs. Therefore X-ray selection from a very deep
X-ray survey might be the best way to obtain the most complete census of AGNs. However,
because soft X-rays can be easily absorbed by the intergalactic medium, distant or high-redshift
AGNs are always weak in X-ray emission and may not be detected by present X-ray telescopes.
Existing X-ray surveys also show that X-ray selection is heavily biased against high-redshift
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objects. The last three methods are not effective in practice and few surveys have been based
on them. Thus, all the ways described here suffer significant selection effects, and the resulting
AGN samples are all incomplete to some extent. In order to construct samples with a high
degree of completeness, combined methods need to be employed. Wei (1999) used log C +0.4R

as an alternative expression for log(fX/fopt), where C is X-ray count rate and R stands for the
R magnitude. Then a criterion of high X-ray-to-optical flux ratio, i.e. log C ≥ −0.4R+4.9, was
used to pre-select AGN samples. The success rate of detecting AGN then amounted to 73%.
This method only selects AGNs with high X-to-optical flux ratio, but cannot acquire complete
samples. In this letter, we obtain the sample from optical, X-ray and infrared bands, and put
forward an automatic method, learning vector quantization (LVQ), to classify multiwavelengh
data. Compared to other methods, our method avoids the weakness of a single selection method,
artificial cutoffs, and improves the accuracy and efficiency of pre-selecting sources.

At present, we cannot effectively categorize by LVQ the sample to five types: quasars, BL
Lacs, active galaxies, stars and galaxies with the ten parameters. The low accuracy of BL Lacs,
active galaxies and galaxies possibly results from their small sample sizes, and also from the
fact that the combination of the parameters is not ideal for discriminating between AGNs and
non-AGNs. To improve the accuracy, we need to enlarge the size of the sample or to extract
more effective features. In fact, if we analyze the classification, we may note that contamination
is probably due to two reasons: (1) true misclassifications and (2) a priori classification selection
problem. The former is inherent for the chosen method. The latter refers to the fact of having
a restricted number of output classes, for instance, when a star-galaxy classifier is presented
with cases of processing defects, source merging, or cosmic rays. Hence, one must ensure that
in the case of automatic classification there should be enough classification categories available,
otherwise the data must be preprocessed correspondingly. The recipe for more successful neural
network classification could be to provide enough neurons to learn the categories. Overall the
method is potentially very promising because they can provide a more robust approach to
source segmentation.

6 CONCLUSIONS

In this paper we have introduced the learning vector quantization algorithm (LVQ) applied
to the data from optical, X-ray and infrared bands, and tested it with different samples. LVQ
shows better performance in classifying multi-wavelength data, especially in separating AGNs
from stars and normal galaxies. Considering classification reliability, we find that the parame-
ters from optical, X-ray and infrared bands that lead to the most reliable classification results
are B −R, B + 2.5 log (ct), ct, HR1, HR2, ext, extl, J −H, H −K and J + 2.5 log (ct), they
are proved to be effective features for separating AGNs from non-AGNs. Our results will be
applicable to preselect sources in other digital and digitized sky surveys that will be a part of
International Virtual Observatory (IVO). A careful, systematic selection of targets from large
sky surveys for focused follow-up studies using large telescopes and space observatories would
make an optimal use of the valuable observing time at such costly facilities. Perhaps the most
important would be the enabling role of IVO in making these information-rich data sets and
tools to explore them available to the broad community, regardless of their access to large
telescopes: important new discoveries can be made in data mining of the digital sky. With
the data improving in quality and quantity, LVQ will show its superiority in classification in
astronomy. One possible extension of this work is to add parameters from more bands, or
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change the extracted features, for instance, to select features from spectral information of all
kinds of objects. Another can be the application of unsupervised methods to these data sets,
which could result in a different, new classification scheme.
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