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Abstract In previous works, a generic dynamical model has been suggested by
Huang et al., which is shown to be correct for both adiabatic and radiative blast-
waves, in both ultra-relativistic and non-relativistic phases. In deriving their equa-
tions, Huang et al. have assumed that the radiative efficiency of the fireball is
constant. They then applied their model directly to realistic cases where the radia-
tive efficiency evolves with time. In this paper, we abandon the above assumption
and re-derive a more accurate dynamical equation for gamma-ray burst remnants.
Numerical results show that the model presented by Huang et al. is accurate enough
in general cases.

Key words: gamma rays: bursts — hydrodynamics — radiation mechanisms:
nonthermal

1 INTRODUCTION

Although the progenitors of gamma-ray bursts (GRBs) are still controversial (Cheng & Dai
2001; Cheng & Lu 2001b; Lu et al. 2000a, b), it is generally believed that energetic fireballs
should be involved, where baryons are eventually accelerated to ultra-relativistic speed (Wu et
al. 2001). After the main burst phase, the thin baryonic shell expands at ultra-relativistic speed
into the surrounding matter, producing afterglows in soft bands (Cheng, Huang & Lu 2001;
Mao & Wang 2001a, b; Gou et al. 2001a, b; Huang, Yang & Lu 2001; Zhang & Mészáros 2002).
For good recent reviews on afterglow observations and theories, see van Paradijs, Kouveliotou
& Wijers (2000) and Cheng & Lu (2001a).

The dynamics of the gamma-ray burst remnants is different in two cases in which the
remnant expansion is either adiabatic or highly radiative (Blandford & McKee 1976, 1977).
However, the conditions under which the remnant dynamics may be considered adiabatic or
radiative are far from unambiguous and are crucially dependent on poorly known questions
about postshock energy exchange between protons and electrons (Mészáros, Rees & Wijers
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1998). Furthermore, a partially radiative regime with decreasing radiative efficiency may exist
in realistic fireballs (Dai, Huang & Lu 1999). So, it is necessary to construct a dynamical model
that is able to describe a realistic fireball, i.e., a fireball with evolving radiative efficiency.

The dynamics of gamma-ray burst remnants has been studied extensively (Sari 1997; Cohen,
Piran & Sari 1998; Panaitescu, Mészáros & Rees 1998; Wei & Lu 1998; Chiang & Dermer 1999;
Rhoads 1999; Panaitescu & Mészáros 1999; Kobayashi, Piran & Sari 1999; Huang et al. 1998a,
b, c, 1999a, b, 2000a, b, c, 2002; Dermer & Humi 2001). Especially, a generic dynamical model
was proposed by Huang, Dai & Lu (1999a, hereafter HDL99), which is shown to be applicable
to both ultra-relativistic and non-relativistic blastwaves, whether adiabatic or highly radiative.
In their derivation, Huang, Dai and Lu implicitly assumed that the radiative efficiency of the
fireball, ε, is a constant during the deceleration. They then generalized their model to discuss
realistic blastwaves, where ε evolves with time (Huang et al. 2000a, b). In this work we will
make a careful inspection of their generalization. We first repeat the derivation of HDL99, but
without the ε ≡ const assumption. We then compare our result with that of HDL99 numerically.
It is found that Huang et al.’s generic model can be applied to realistic remnants satisfactorily.

2 DYNAMICS

We assume that after the initial GRB phase, the total energy left in the fireball is comparable
to the radiation energy emitted in gamma-rays, i.e., E0 ∼ 1051–1052 erg. Denote the mass of
the contaminating baryons as M0, then the fireball continues to expand at a Lorentz factor
of η = E0/(M0c

2). Subsequently, at a radius R0, the expansion of the fireball starts to be
significantly influenced by the swept-up medium and external shock may form (Rees & Mészáros
1992). As usual, R0 is supposed to be

R0 =
(

3E0

4πnmpc2η2

)1/3

, (1)

where n is the number density of the interstellar medium, mp is the mass of a proton.

2.1 Basic Dynamical Equations

In HDL99, a generic dynamical model that is applicable in both ultra-relativistic and non-
relativistic phases of GRB afterglows has been proposed. The key point of the model is a
differential equation

dγ

dm
= − γ2 − 1

M0 + εm + 2(1− ε)γm
, (2)

where γ is the bulk Lorentz factor of the fireball, m is the swept-up mass. The equation can be
derived as follows. Global conservation of energy implies that

d[γ(M0c
2 + mc2 + U)] = dmc2 + γdUrad. (3)

Here U is the co-moving internal energy with rest-mass excluded, Urad is the internal energy
that is radiated from the fireball. If a fraction ε of swept-up kinetic energy is instantaneously
radiated from the fireball, then dUrad = −ε(γ − 1)dmc2. The internal energy U in the fireball
changes because of the change of the kinetic energy of the swept-up matter, due to expansion of
the fireball and the energy loss through radiation. Thus, we assume U = (1−ε)Uex, where Uex is
the internal energy produced in this expansion. It is usually assumed that dUex = (γ−1)dmc2.
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However, the jump conditions (Blandford & Mckee 1976) at the forward shock imply that
Uex = (γ − 1)mc2, so the correct expression for dUex under thin shell approximation should be
dUex = d[(γ− 1)mc2] = (γ− 1)dmc2 + mc2dγ. Assuming ε ' const, then from Equation (3) we
can obtain Equation (2).

It is worth noting that in the expression of dUex = (γ − 1)dmc2 + mc2dγ, the term mc2dγ

is negative when the fireball is decelerating. This term, in fact, represents the loss of internal
energy due to volume expansion of the fireball, i.e., the adiabatic loss term (dUadi) defined by
Dermer and Humi (2001). This can be clearly seen from equation (13) of Dermer and Humi
(2001). Under thin shell approximation, their equation can be approximately simplified as
mc2dγ.

In the above derivation, ε is assumed to be constant during the deceleration. However,
in realistic fireballs, ε is expected to evolve from 1 to 0 owing to the changes in the relative
importance of synchrotron-induced and expansion-induced loss of energy (Dai, Huang & Lu
1999). Equation (2) has been simply generalized to the case that ε evolves with time (Huang et
al. 1999b, 2000a, b, c). However, this might induce some errors. Below, we will abandon the
constant ε assumption and derive the equations that are strictly applicable for fireballs with
evolving radiative efficiency.

The assumption that U = (1− ε)Uex overestimates the true internal energy, because at late
stages ε is near 0, but at early stages it is about 1. Instead of using U = (1− ε)Uex, we use the
expression dU = (1 − ε)dUex. Substituting it into Equation (3), we obtain another differential
equation describing the evolution of the fireball

dγ

dm
= − γ2 − 1

M0 + m + U/c2 + (1− ε)γm
, (4)

with
dU = (1− ε)dUex = (1− ε)[(γ − 1)dmc2 + mc2dγ]. (5)

In the highly radiative case (ε ' 1, and U = 0), Equation (4) reduces to the case of Blandford
& McKee (1976)

dγ

dm
= − γ2 − 1

M0 + m
. (6)

While in the fully adiabatic case (ε ' 0, and U = Uex = (γ − 1)mc2), Equation (4) reduces to
the adiabatic case of HDL99

dγ

dm
= − γ2 − 1

M0 + 2γm
. (7)

In fact, taking ε ≡ const, Equation (4) exactly reduces to the generic model of HDL99. If ε

evolves with time, however, we would expect that the fireball described by Equation (4) will
decelerate more rapidly than one described by Equation (2).

2.2 Radiative Efficiency

According to Blandford & McKee (1976), the electron number density (n′) and energy
density (e′) of the shocked medium in the frame co-moving with the fireball can be written as
(also see Huang et al. 1998b)

n′ =
γ̂γ + 1
γ̂ − 1

n , (8)

e′ =
γ̂γ + 1
γ̂ − 1

(γ − 1)nmpc
2 , (9)
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where γ̂ is the adiabatic index of the shocked medium, which is generally between 4/3 and
5/3. Equations (8) and (9) are appropriate for both relativistic and non-relativistic blastwaves.
From the definition of γ̂ (Blandford & McKee 1976), Dai, Huang & Lu (1999) gave a simple and
useful approximate expression for γ̂: γ̂ ' (4γ +1)/(3γ). It can be seen from this approximation
that γ̂ ' 4/3 for an extremely relativistic blastwave and γ̂ ' 5/3 for a non-relativistic shock.

As usual, we assume that the magnetic density in the co-moving frame is a fixed fraction εB

of the internal energy density, viz., B′ = (8πεBe′)1/2, and that the shock-accelerated electrons
behind the blastwave carry a fraction εe of the internal energy (Huang et al. 2000a, b). This
implies that the minimum Lorentz factor of the random motion of electrons in the co-moving
frame is γe, min = εe(γ− 1)mp/me + 1. We here consider only synchrotron emission from these
electrons, and neglect the contribution of inverse Compton emission because the latter emission
is of minor importance particularly at late times of the evolution (Waxman 1997; Dai & Lu
1998). The energy of a typical accelerated electron behind the blastwave is lost both through
synchrotron radiation and through expansion of the fireball, thus the radiative efficiency of
this single electron is given by t′−1

syn/(t′−1
syn + t′−1

ex )(Dai & Lu 1998; Dai, Huang & Lu 1999),
where t′syn is the synchrotron cooling time, t′syn = 6πmec/(σT B′2γe, min), and t′ex = R/(γc) is
the co-moving frame expansion time. Here R is the radius of the blastwave. Since all of the
accelerated electrons behind the blastwave carry only a fraction εe of the internal energy, the
radiative efficiency of the fireball can be given by (Dai, Huang & Lu 1999)

ε = εe
t′−1
syn

t′−1
syn + t′−1

ex

. (10)

In the highly radiative case, εe ' 1 and t′syn � t′ex, we have ε ' 1. The early evolution of
the remnants is likely to be in this regime. For an adiabatic expansion, εe � 1 or t′syn � t′ex,
we obtain ε ' 0, which regime we believe to apply to the late evolution. In realistic case, the
radiative efficiency of the fireball (ε) evolves from about 1 to 0 (Huang et al. 2000a).

2.3 Numerical Results

The evolution of the radius and swept-up mass are described by (Huang et al. 1998a, 2000a,
b)

dm = 4πR2nmpdR, (11)

dR = βcγ(γ +
√

γ2 − 1)dt, (12)

where t is the time measured in the observer’s frame. Then Equations (4) and (5) can be solved
numerically.

Figure 1 compares the evolution of the Lorentz factor calculated according to Equations (2)
and (4). In our calculations, we take E0 = 1052 erg, n = 1 cm−3, M0 = 2× 10−5M�, εe = 1.0,
εB = 0.01. In both cases, Equation (10) is used to describe the evolution of ε. We see that,
as expected above, the bulk Lorentz factor of the fireball (γ) calculated by Equation (4) (the
solid line) declines more rapidly than that of Equation (2) (the dashed line), but we notice that
the difference here is slight. Figure 2 shows the time dependence of the blastwave radius (R).
Figure 3 shows the evolution of the radiative efficiency of the realistic fireball (ε).

The relation between the radius (R) and the fireball momentum (P = (γ2−1)1/2) is shown
in Figure 4. The solid line is the case when ε evolves according to Equation (10). The dashed
line is the adiabatic case, i.e., ε ≡ 0. The dotted line is the highly radiative case, viz., ε ≡ 1. We
can see that, at early times when the realistic fireball is ultra-relativistic and highly radiative,
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the solid line approximately satisfies P ∝ R−3. At late times when the fireball is non-relativistic
and adiabatic, the deceleration is approximately P ∝ R−3/2, consistent with the Sedov limit.

We emphasize that for the ε ≡ const cases, the results are precisely the same in the two
models characterized by Equation (2) and Equation (4).

Fig. 1 Evolution of the bulk Lorentz factor (γ). The dashed line corresponds to Eq. (2).

The solid line is drawn according to Eq. (4). Parameters: E0 = 1052 erg, n = 1 cm−3,

M0 = 2× 10−5M�, εe = 1.0 and εB = 0.01.

Fig. 2 Evolution of the shock radius (R). Parameters and line styles are the same as in Fig. 1.
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Fig. 3 Evolution of the radiative efficiency of the fireball (ε). Parameters are the same as in Fig. 1.

Fig. 4 Evolution of the fireball momentum (P ) under different assumptions for the radiative

efficiency of the fireball (ε). The solid line is the case when ε evolves according to Equa-

tion (10). The dashed line is the adiabatic case, i.e., ε ≡ 0. The dotted line is the highly

radiative case, viz., ε ≡ 1. Parameters are the same as in Fig. 1.

3 LIGHT CURVE

In Section 2, the dynamical evolution of a postburst fireball has been calculated numerically.
As in Dai, Huang & Lu (1999), we calculate the light curves of optical afterglows. The results
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are shown in Figure 5. Here the solid line is drawn by using the dynamics of Equation (4) and
the dashed line, by using Equation (2). We see that the difference between the two curves is
not large. Flux densities on the dashed curve are higher by about 2 after the peak, but the
slopes of the two curves are identical.

Fig. 5 Predicted afterglow light curves in fixed frequency ν = 1015 Hz. Sν is in units of

erg s−1 cm−2 Hz−1. The dashed line corresponds to the generic model of HDL99, and the solid

line corresponds to Eq. (4). Parameters adopted: E0 = 1052 erg, n = 1 cm−3, M0 = 2×10−5M�,

εe = 1.0, εB = 0.01, p = 2.1, and D = 1Gpc. Note that after ∼ 104 s, the two curves have

nearly the same slope.

4 DISCUSSION AND CONCLUSIONS

The generic model of HDL99 is applicable to both radiative and adiabatic fireballs, and
during both ultra-relativistic and non-relativistic phases. A problem is whether this model is
correct or not when the radiative efficiency of the blastwave (ε) evolves with time. We have
shown that in this case, for the evolution of γ and R, the errors induced in the generic model
are almost negligible. The errors in the optical light curves are slightly amplified due to the
strong dependence of flux density on the Lorentz factor, but the results are still acceptable. We
suggest that the generic model in its simple form of equation (7) in HDL99 could be safely used
when ε varies during the deceleration.

A dynamical model that is applicable to both relativistic and non-relativistic expansion
has been established for quasars and active galactic nuclei by Blandford & McKee (1977).
Their dynamics is most convenient for either adiabatic or highly radiative blastwaves, even
allowing for steady injection of energy into the remnant from the central engine. However,
for partially radiative blastwaves, especially blastwaves with an evolving efficiency, the simple
generic dynamical model of HDL99 is still more convenient.
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Rees M. J., Mészáros P., 1992, MNRAS, 258, 41P

Rhoads J. E., 1999, ApJ, 525, 737

Rybicki G. B., Lightman A. P., 1979, Radiative Process in Astrophysics (New York: Wiley)

Sari R., 1997, ApJ, 489, L37

Sari R., Piran T., Narayan R., 1998, ApJ, 497, L17

van Paradijs J., Kouveliotou C., Wijers R. A. M. J., 2000, ARA&A, 38, 379

Waxman E., 1997, ApJ, 485, L5

Wei D. M., Lu T., 1998, ApJ, 499, 754

Wu M. et al. 2001, Sci. China Ser. A, 44, 1608
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