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Abstract A new spectrum function is obtained by use of the Compton scatter-
ing cross section in the laboratory frame derived earlier. This spectrum function,
besides some modifications in the coefficients of the resonant term, contains also
a non-resonant term which is inversely proportional to the square of the magnetic
field. Based on this spectrum function, the hardening of thermal photons through
inverse Compton scattering by relativistic electron beams on the surface of a strongly
magnetized neutron star is investigated. Two new features are found. First, there is
a maximum scattered photon energy for a given resonant scattering, beyond which
resonance disappears. This maximum depends on the electron energy and the mag-
netic field, but is independent of the incident photon energy. Second, beyond each
resonant scattering, there is a high-energy tail, resulting from non-resonant scat-
tering. It is also found that all the tails have a common upper limit which is the
highest scattered photon energy for the given incident photon and electron energies.
These two new features are absent in the Monte Carlo simulations and therefore,
may have physical implications for y-ray emissions.
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1 INTRODUCTION

With the development of ~-ray burst astronomy, inverse Compton scattering in strong
magnetic fields has attracted more and more attention and a great deal of work has been done
on this subject (Daugherty & Harding 1989; Dermer 1990; Zhang & Qiao 1997; Harding &
Muslimov 1998). Daugherty and Harding (1989) studied the y-ray generation by Monte Carlo
simulations based on Herold’s cross section (Herold 1979) of magnetic Compton scattering in
the electron rest frame (ERF). They calculated the Comptonized photon spectra at different
heights above the surface of a neutron star, which is assumed to have a magnetic dipole field
configuration. In the present paper we will give an analytical study of the «-ray generation
starting from the magnetic Compton scattering cross section in the laboratory frame (LF)
which we derived earlier (Xu et al. 1998) and will give a calculation of the photon spectrum
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resulting from the hardening of the thermal photons on the surface of a magnetized neutron
star.

First, we recalculate the spectrum function of inverse magnetic Compton scattering given
in our previous paper (Xu et al. 1998). By “spectrum function” we mean a function in terms
of which the spectrum of the scattered photons can be calculated. Compared with our previous
results, the recalculation modifies the coefficients in the resonance term and yields a new term
inversely proportional to the square of the magnetic field. This new term is non-resonant and
we call it hereafter the magnetic term. When the magnetic field is weak but is still within the
range of pulsars, the magnetic term will affect the scattered spectrum significantly.

Then, with the help of the improved spectrum function we investigate the hardening of
the thermal photons due to the Compton scattering by a beam of relativistic monochromatic
electrons on the surface of a pulsar. Our new results, as will be shown in the text, consist of
two parts. First, there is a maximum scattered photon energy for each resonant scattering,
beyond which the resonance disappears. This maximum is closely related to the magnetic field:
the stronger the magnetic field, the higher the maximum. Second, a high-energy tail occurs
beyond each resonant scattering which is closely related to the magnetic term. It is found that
all the tails have a common upper limit, the highest scattered photon energy for given incident
photon and electron energies, which is independent of the magnetic field. This means that the
highest scattered photon energy calculated from our spectrum function is higher than that from
the Monte Carlo simulations (Daugherty & Harding 1989). These two new features may have
physical implications for y-ray emission and we hope they will be confirmed by observations.

2 CALCULATION OF THE SPECTRUM FUNCTION OF MAGNETIC IN-
VERSE COMPTON SCATTERING

In order to recalculate the spectrum function of magnetic inverse Compton scattering, the
full expression of the corresponding cross section in the LF is needed; this is quoted as follows
(Xu et al. 1998):

do ?”‘(2) Af

dQr 8 A (1+7)(L+7+4A—Ay)
exp {—% (A? sin® 07 + A? sin® 91)} [Y|?
[v (1= Beosby) + A; (1 — cosb; cosf) — Apsin® 6]’

(1)

where B is the magnetic field with its direction taken to be along the z-axis, A,=w;/m,
Ay=wy/m are the reduced incident and scattered photon energies (m is the electron rest en-
ergy), 6; and 6; are the incident and scattered photon angles with respect to the B field,
¢, the azimuth angle of the scattered photon (the azimuth angle of the incident photon is
taken to be zero), ~, the electron energy, 8 = /1 — 1/42, rg, the classical electron radius,
B. = mTQ ~ 4.414 x 10°T is the critical magnetic field, and A;., Ag,., Ag are defined respec-
tively by A = vA; (1 — Bcosb;), Apr = yAf (1 — Beosby), Ag = “2 = B%v where wy = eB/m
is the cyclotron energy. |Y|? in Eq. (1) is given by

VP =Y (L= 1) P+ Y (L= 20) P+ Y (2 = 1) P+ 1Y (20 = 2¢) 1%, (2)
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where \; — Af represents the scattering of a photon from polarization A; to A¢, and

Y(1; = 1f) = [(A-cosbf — By) cos 0;e'® — By cos er_id’] Z C"S’i,nﬂemd’
n=0

oo
—[(A” cos O + By) cos;e™"* 4 By cos fe'?] Z C"Sfpyre” e
n=0
+sin0;sin0p[AL Y ("Sine™ — ALY ("Sppe MO (3)
n=0 n=0
where
Ay = a£b(By— Afcosby),
Al = d £b(By— Afcosby),
(4)
By = bAy sin? Oy,
BQ = bAZ SiIl2 91',
in which
a = By(l+7y+A:)(By+ Aicosti — Apcosby) + (v — 1+ Ai)(1+7)(1+7+ Ai — Af),
a’ = By(L+v—A7) By +Aicost — Agcosty) + (v =1 = Ap) (1+7) (L+7+ A = Ay),
b = By(L+v+Ai—Ap)+ (By+ Aicost; — Agcosty) (1+7),
(5)
and
n = ¢sing,
B
C = ﬁAlAf sinGi sin9f,
1 (6)
Si,n = . 9 )
n! [2 (Ajr —nlo) + AZsin 02}
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Stn = = .
n! [2 (A +nlo) — Afsin Hf]
Other Y’s are given by
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In astrophysics one is more interested in the inverse Compton scattering of a low energy
photon by a relativistic electron in strong magnetic fields satisfying A; < 1, v > 1. We consider
first the condition A; < 1. In this case the summations in Egs. (7)-(9) converge rapidly, so
that keeping only the term n = 0 is already a satisfactory approximation. To show this we first
integrate over the azimuth angle ¢ and retain only the leading terms, then the differential cross
section (1) is reduced to

do = U(Ai59i77)9f) Slnefd9f7 (10)
where
ré A
Ai 0; 0 = —2 ’
o (Ai,0:,7,0¢) 4 N (v+1)(I+v+4,—Ay)
exp (— 23 A sin® 9f> YT

— . (11)
[v(1—Bcosby) + A; (1 —cosb;cosby) — Agsin® 0]

and Y, is given by
Y, = 0152»271 + CQS?J
+ [(A+si,0 — AL Sp0) 201 = Jo () AL A Si0Spo| (sinfisindp)?,  (12)
in which
Cy = (A_cosb; — Bl)2 (1 + cos? Hi) + (A_ cosb; — 32)2 + (B cos 9f)2 + A%, (13)
Cy = (A" cosby + Bl)2 (14 cos®6;) + (A" cos; + B2)2 + (By cos 0f)2 + A% (14)

and Jy (¢) is the zeroth order Bessel function. It is worth pointing out here that the approx-
imation (12) can also be justified by considering the nonrelativistic limit in the ERF (y = 1
or 3 =0). In fact, under the Thomson limit (Ay ~ A; < 1) it is easy to see that Jy ({) =~ 1,

A_=-A" =4A;, By =By~ 0and A, = —A' ~4A;, then Eq.(11) can be simplified to
o (A, 0:,65) L2 2 1 2 2 A? A?
— 7 —=sin“f;sin“ O+ — (1 + cos” 6;) (1 -+ cos” 6 C + U , (15
7r7’(2) f 4( )( f) (Ai_AO)2 (A; + Do) (15)

which is just Herold’s nonrelativistic result, a well known widely used expression. However,
Eq. (11) together with Eq. (12) is also valid for the relativistic case.

In the following we use this simplified cross section to calculate the spectrum function of
the magnetic inverse Compton scattering. In the present paper, we concentrate our attention
on the scattering by a monochromatic (vy) electron beam. The density of scattered photons per
unit time is

dN (v)
dt

:ne/sin@id&/sinﬁfdﬂf/n(Ai) dA; (1 — Bcosb;) o (A, 0;,7,0f)f (cosd;), (16)
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where n, is the density of the electron beam and f (cosd;) an anisotropic factor for the incident
photons. If the incident photons are isotropic, then f (cos®;) = 1. Taking into account energy
conservation and the condition A; < 1, it is easy to derive

v(1—pfBcosbO)+ A; (1 —cosb;cosby) —AfsinZQfdA
f.

Ay (’Y*Afcoséf) (17)

Sinefdef = —

With substitution of this variable transformation in Eq.(16), the spectrum of power density per
unit scattered photon energy of a low frequency photon gas scattered by the monochromatic
electron beam can be derived:

ApdN (v, Ay)

_ 2 . ) )
dtdAf = SWTQne/n(Az)dAzF (’y,AuAf)v (18)

where

Y, exp | — 2 A2 sin20f
F(v,A:Ay) :/Sineid@'ﬂ [ bt } f (cosd;), (19)

Aq 329 (v — Ay) (v — Ay cosby)
is just the desired spectrum function. Now we take into account the condition v > 1, and then
it is easy to show

A_ = [27 = Af (1 4+cosby)] Ay,
A = —[2v—Af(1+cosbyf)] Ay,
Ay = [2y—Ap(1+cosby)] 2792,
(20)
Al = 27— Ap (1 +cosby)] (292 — Apr),
By = [2v—Af(1+cosby)] (1 +cosbyf) Ay,
By = 27— Ay (1+4cosbf)] (14 cosb;) Ay,
and the spectrum function can be simplified accordingly to
; Ay Y] Be o . 9
F(v,Ai,Af) = /SmeideiES?yQ exp {_QBAf sin® @y | f (cos?;), (21)
where
r Dl D2
T (A —A T 2, \?
i B0 HTG (A, + Ao — 0547 sin® 0y )
272 29?2 - A ’
+ Afy - i QfT 3 sin® 0, sin” 0 ¢
ir  Agp —O.5Af sin” 0
411 — J, 2 (242 — Ay, sin? 0, sin? 0
N [1—Jo (O] (27 ) ‘. (22)
Air (Agr = 0503 sin? ;)
in which
Dy = [Aj.cos; — Agp (14 cosfy)]? (1+ cos?6;) + AZ {2 + (1 + cos 6;)* cos? Hf} , (23)
23

Dy = [A4 (14 cosb;) — Ay, cos 91]2 + A% (2 + cos? Qi) + A2 (1 + cos 91)2 cos? 0y,
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and I'y is related to the inverse life time of an electron in intermediate states which is usually
estimated according to the transition rate of an electron from the first Landau level to the
ground state (Daughergy & Vantura 1978), that is, I'y = 2a (B/B.)’ with « the fine structure
constant. In obtaining Eq.(21), use has been made of the following approximation

2y—Ar(1+ Cosﬂf)]2 N
A(y—Af) (v — Aycosty)

(24)

To see this we note that Ay reaches maximum only at 0y = 0 and §; = 7, so Ay < « if Oy
is not close to zero and then Eq. (24) holds; if 6 is close to zero, then it is clear that Eq. (24)
is also valid, thus the approximation is justified. It can be shown that Aysinf; can also be
neglected if there are other dominant terms. Using again the energy conservation, we get the
following approximate expression,

1—pBcosby+ &(1 —cosb;cosby)| Ay = (1 —[Bcosb;) A, . (25)
Y

For further simplification, we consider the case where 6 is not close to zero, then Eq. (25) can
be simplified to
(1—pcosty) Ay =(1—[Bcosb;) A, . (26)

This means that the Doppler frequencies of the incident and scattered photons are equal,
Ajr = Ay,, which is just the Thomson limit in the LF. Equation (25) tells us also that the
highest scattered photon energy is of magnitude (1 + ﬁ)2 Y2wi/ (14214 B)74;) ~ 4v3%w;
/ (1 +4v4;), which becomes 4y?w; for vA; < 1. This is a well-known feature of inverse
Compton scattering. Applying the Thomson limit Eq. (26) and expanding Jy (¢) up to (2,
Eq. (22) is reduced to

Y/ _ CA?T + OA%T‘
(Air - AO)2 + 2 (Air + A0)2

+ (sin 6; sin Hf)2 +0.5[Ajr (1 + cosb;) (14 cosby) B./B)?, (27)
where the coefficient C' is defined by
C = (1+cos®0;) (1+cos®0y) +2 (1 + cosf;cos®0y) . (28)
Setting x = (1 — cos8;) ~ (1 — Fcosb;), with its lower limit being determined by Eq. (25)

Ay

Tmin ~ ) 29
278, (1— A7) 29
the spectrum function can be expressed as
F=F +F+F;3, (30)
in which
Wy 2 22%c () 22c ()
o /dx _+ ra-a, (31)
32y (x —ap)"+T% (x+ap)
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By = 32172/2dm(2—m) (2—i>x2f(1—x), (32)

Tmin

b= 0 (5 [ famn (2o 2)] 100, )

Tmin

where, w, = ﬂ, ap = =0 , T =2a(B/B.)” /372A;, and ¢ (z) can be read from Eq. (28),
w Yw;

1+(1-2) (1—”7)2] . (34)

Wy

c(z) = (2 -2z +2?) (2—2x+xz>+2

wp Wz

A simple investigation will show that F5 is much smaller than F; or F5. So the dominant
contribution to the spectrum function is from F; and F3. Resonant scattering occurs when
Tmin < ag < 2 is satisfied where F} becomes very large. This means that resonant scattering
becomes operative when the following conditions are satisfied:

wo wy
Ywi =2 and Ywi T 29%wi (1= Ag/v)’
which can be expressed alternatively by
wi > — and wy < T i’y;}ZO (35)
For simplicity only, we consider, from
this point on, the isotropic case, i.e.,
f (1 —2x) = 1. Then the spectrum func-
tion can be plotted for different magnetic 10°1
field strengths as in Fig. 1, where ¢ is the 0] /
reduced energy of scattered photons, e = 5 0] g:g;?%fc//
wg/4y?w;. This figure shows that the ef- g 00 B=02B; —
ficiency of resonant scattering (for small 1% Bozoss ///?//////
B fields) is much higher than that of non- 5101 bz ////7/7/
resonant scattering (for large B fields). We 51071 B;‘):gggcb 2/
should point out here that the contribu- 10°1  B=04B, ~ 7=100
tion of Fj is usually smaller than F}, even 1074 @;=0.001 m
for the non-resonant scattering. However 10° : : :
when ap < Tmin, L€, wp > 12_‘_77200, Iy 0.001 0.01 0.1 1
will play an important role in the non- Reduced photon energy (¢)
resonant scattering (see Fig.4). It is seen
from Eq. (35) that the maximum energy of Fig.1 Spectral function of the magnetic in-
scattered photon resulting from the mag- verse Compton scattering. The scattered pho-
netic resonant scattering is given by ton energy is a reduced one (¢ = wy/47w).
It is seen that the weaker is the B field, the
Wreg = 2ywo 7 (36) larger is the function value (i.e., the higher is
1424 the scattering efficiency).

which depends on the incident electron energy and the magnetic field, but is independent of
the incident photon energy.
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3 INVERSE COMPTON SCATTERING OF THERMAL PHOTONS ON THE
SURFACE OF A PULSAR

Due to the high temperature near the cap of a pulsar, T ~ 10° K, there is a large number
of soft X-ray photons resulting from thermal radiation. On the other hand, there are also high-
energy electron beams in the magnetosphere produced by electrostatic acceleration. According
to Eq. (35), these two conditions make it possible to produce hard X-ray and -ray emissions on
the surface of a strongly magnetized pulsar through the resonant magnetic Compton scattering.

The spectrum of black body radiation is

n (w;) dw; = — —5——dw; . (37)
7r

Then the power density of scattered photons per unit scattered photon energy can be expressed
as

dP
dP (wy) = 87rr8ne/n(wi)dwiF (y,wi,wy) - (38)
dwf
Alternatively, the scattered photon density per unit scattered photon energy and per unit time
is
dN
M = Swrgne/n (w;) dw; F' (7y,ws, wy) Jwy (39)

In the actual calculations, we assume T = 10°K and « = 100 which are typical values
for pulsars. Besides, for simplicity but without loss of generality, we set n. = 1. Due to the
resonant scattering condition w; > wp/27v, only a small portion of thermal photons in Eq. (37)
contribute to the resonant scattering if the magnetic field is very strong. A simple estimation
shows that the non-resonant scattering is dominant if B > 0.3B.. On the other hand, if the
magnetic field is relatively weak, B < 0.3B,, then the resonant scattering is dominant.

We consider first the power spectrum of scattered photons. Figures 2a, 2b, and 2c are
plotted according to Eq. (38) for different values of the magnetic field strength. Figures 2a
and 2b assume that, far away from the resonant region (B > 0.5B.), soft X-ray photons are
hardened to ~-ray photons mainly through the non-resonant scattering and the shape of the
spectrum is similar to that of a black body. In Fig.2c the magnetic field is relatively weak
(B = 0.34B.) and resonant scattering begins to act, the power spectrum of scattered photon
differs remarkably from that of the black body radiation, i.e., the distribution of scattered
photons is shifted to the high-energy end due to the increase of the scattering efficiency. This
fact indicates that the strength of magnetic field plays an important role in the magnetic inverse
Compton scattering.

Next we consider the spectrum of the scattered photon number for the non-resonant case.
Following Daugherty and Harding (1989), the magnetic field near the pole on the surface of
the neutron star is assumed to have a dipole configuration B = By [ro/ (ro + 2)]° where rq is
the radius of the star and z is the height above the star and By = 1.14B,.. Based on Eq. (39)
the rate of scattered photon density is calculated from z = 0.05r¢ up to z = 0.5r¢ with a step
Az = 0.057¢ and the results are shown in Fig. 3. It shows that, as the magnetic field becomes
weaker, the rate of production of high-energy photons goes up. This means that the energy-
loss of electrons in the process of magnetic Compton scattering increases as the magnetic field
strength decreases. It is worth pointing out here that all three figures have a common upper
limit for the scattered photon energy, wy max = 47?w;/ (1 + 4vA;), which is the highest photon
energy in the nonmagnetic Compton scattering.



Hardening of Thermal Photons Through Inverse Compton Scattering 419

[ 16
~ 301 ~ 14}
T 1
lv 251 Z12r
= ok
E,_ 201 i’* ol
EREl) S 6}
< Lof S o4t
o
0.5 2+
0.0 ' ! 0 0 2 20
' 0 20 40
Scattered photon energy (m) Scattered photon energy (m)
(a) (b)
701
T\m/ 60
~ 501
T 401
S 301
x 20F
=
10
0 . L )
0 20 40
Scattered photon energy (m)

(c)

Fig.2 The power density spectra due to Comptonization of thermal photons by monoenergetic
injected electrons at vy = 100 for T = 10° K and different B fields. The spectra in Figs. 2a and
2b with B = 0.5 B have a shape similar to that of the black body radiation. While Fig. 2c with
B = 0.34 B, differs from remarkably from black body radiation due to the shift of distribution
of photons to the high-energy end.

Now we check the rate of scattered photon density for the resonant case. Results of numer-
ical calculations are shown in Fig.4, for the magnetic field strength By = 0.2B.. This figure
differs considerably from corresponding figure (figure 9) in Daugherty and Harding’s paper.
First, each resonant scattering has its own maximum wyes (depending on B), beyond which
the scattered photon number decreases sharply and the high-energy tail begins. While in fig. 9
in Daugherty and Harding’s paper every resonant scattering terminates at a common point
(independent of B) which seems to be the highest scattered photon energy, and there are no
high-energy tails. In fact the high-energy tails in Fig. 4 result from the non-resonant Compton
scattering, which is closely related to the magnetic term as mentioned at the end of Section
2, the weaker the magnetic field is, the more important the magnetic term and the longer the
tail will be. Also, the highest scattered photon energy wymax, the same in Figs. 1-3, is much
higher than that obtained by Daugherty and Harding (1989). Though the photon production
rate in the high-energy tail is much smaller than in the resonant part, it indicates that the
magnetic inverse Compton scattering can yield a much higher photon energy than that ob-
tained by Daugherty and Harding. However it might be that only few photons with energies
higher than the threshold could escape due to the production of electron-positron pairs through
several channels, for example, through the collision of a high-energy photon with a low-energy
one (Lightman & Zdziarski 1987), or the production by single photons in strong magnetic fields
(Daugherty & Harding 1987).
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Fig.3  The spectra of the rate of scattered
photon density per scattered photon energy,
assuming monoenergetic injected electrons at
v = 100 for By = 1.14B. and T = 10°K.
Spectra are plotted from 0.057¢ up to 0.57¢
with Az = 0.0579.
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Fig.4  The spectra of the rate of scattered
photon density per unit scattered photon en-
ergy, assuming monoenergytic injected elec-
trons at v = 100 for B = 0.2B. and T =
108 K. Spectra are plotted from 0.057 up to
0.57r9 with a step Az = 0.057r9. The flat part
comes from the resonant scattering and the
high-energy tails result from the non-resonant
scattering which is closely related to the mag-
netic term.

To conclude, we have recalculated the spectrum function of magnetic inverse Compton

scattering in the laboratory frame. A new term, the magnetic term, is obtained which is
absent in the previous work. With help of this new spectrum function the Comptonization
of thermal photons at the surface of a magnetized neutron star is investigated. Compared
with previous numerical simulations (Daugherty & Harding 1989), our calculated spectrum for
scattered photons shows that every resonant scattering has its own field-depending terminate
point beyond which there is a high-energy tail which is closely related to the magnetic term.
It is shown also that all the high-energy tails have a common terminating point, the highest
scattered photon energy, which is much higher than that obtained by above mentioned numerical

simulations.
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