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Abstract A new spectrum function is obtained by use of the Compton scatter-
ing cross section in the laboratory frame derived earlier. This spectrum function,
besides some modifications in the coefficients of the resonant term, contains also
a non-resonant term which is inversely proportional to the square of the magnetic
field. Based on this spectrum function, the hardening of thermal photons through
inverse Compton scattering by relativistic electron beams on the surface of a strongly
magnetized neutron star is investigated. Two new features are found. First, there is
a maximum scattered photon energy for a given resonant scattering, beyond which
resonance disappears. This maximum depends on the electron energy and the mag-
netic field, but is independent of the incident photon energy. Second, beyond each
resonant scattering, there is a high-energy tail, resulting from non-resonant scat-
tering. It is also found that all the tails have a common upper limit which is the
highest scattered photon energy for the given incident photon and electron energies.
These two new features are absent in the Monte Carlo simulations and therefore,
may have physical implications for γ-ray emissions.
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1 INTRODUCTION

With the development of γ-ray burst astronomy, inverse Compton scattering in strong
magnetic fields has attracted more and more attention and a great deal of work has been done
on this subject (Daugherty & Harding 1989; Dermer 1990; Zhang & Qiao 1997; Harding &
Muslimov 1998). Daugherty and Harding (1989) studied the γ-ray generation by Monte Carlo
simulations based on Herold’s cross section (Herold 1979) of magnetic Compton scattering in
the electron rest frame (ERF). They calculated the Comptonized photon spectra at different
heights above the surface of a neutron star, which is assumed to have a magnetic dipole field
configuration. In the present paper we will give an analytical study of the γ-ray generation
starting from the magnetic Compton scattering cross section in the laboratory frame (LF)
which we derived earlier (Xu et al. 1998) and will give a calculation of the photon spectrum
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resulting from the hardening of the thermal photons on the surface of a magnetized neutron
star.

First, we recalculate the spectrum function of inverse magnetic Compton scattering given
in our previous paper (Xu et al. 1998). By “spectrum function” we mean a function in terms
of which the spectrum of the scattered photons can be calculated. Compared with our previous
results, the recalculation modifies the coefficients in the resonance term and yields a new term
inversely proportional to the square of the magnetic field. This new term is non-resonant and
we call it hereafter the magnetic term. When the magnetic field is weak but is still within the
range of pulsars, the magnetic term will affect the scattered spectrum significantly.

Then, with the help of the improved spectrum function we investigate the hardening of
the thermal photons due to the Compton scattering by a beam of relativistic monochromatic
electrons on the surface of a pulsar. Our new results, as will be shown in the text, consist of
two parts. First, there is a maximum scattered photon energy for each resonant scattering,
beyond which the resonance disappears. This maximum is closely related to the magnetic field:
the stronger the magnetic field, the higher the maximum. Second, a high-energy tail occurs
beyond each resonant scattering which is closely related to the magnetic term. It is found that
all the tails have a common upper limit, the highest scattered photon energy for given incident
photon and electron energies, which is independent of the magnetic field. This means that the
highest scattered photon energy calculated from our spectrum function is higher than that from
the Monte Carlo simulations (Daugherty & Harding 1989). These two new features may have
physical implications for γ-ray emission and we hope they will be confirmed by observations.

2 CALCULATION OF THE SPECTRUM FUNCTION OF MAGNETIC IN-
VERSE COMPTON SCATTERING

In order to recalculate the spectrum function of magnetic inverse Compton scattering, the
full expression of the corresponding cross section in the LF is needed; this is quoted as follows
(Xu et al. 1998):
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=

r2
0

8
∆f

∆ir (1 + γ) (1 + γ + ∆i −∆f )

×
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where B is the magnetic field with its direction taken to be along the z-axis, ∆i=ωi/m,
∆f=ωf/m are the reduced incident and scattered photon energies (m is the electron rest en-
ergy), θi and θf are the incident and scattered photon angles with respect to the B field,
φ, the azimuth angle of the scattered photon (the azimuth angle of the incident photon is
taken to be zero), γ, the electron energy, β =

√
1− 1/γ2, r0, the classical electron radius,

Bc = m2

e ≈ 4.414 × 109T is the critical magnetic field, and ∆ir, ∆fr, ∆0 are defined respec-
tively by ∆ir = γ∆i (1− β cos θi), ∆fr = γ∆f (1− β cos θf ), ∆0 = ω0

m = B
Bc

, where ω0 = eB/m

is the cyclotron energy. |Y |2 in Eq. (1) is given by

|Y |2 = |Y (1i → 1f ) |2 + |Y (1i → 2f ) |2 + |Y (2i → 1f ) |2 + |Y (2i → 2f ) |2, (2)
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where λi → λf represents the scattering of a photon from polarization λi to λf , and
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iφ −B2 cos θfe−iφ]
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where
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in which
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Other Y ’s are given by
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Y (2i → 2f ) = A−
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In astrophysics one is more interested in the inverse Compton scattering of a low energy
photon by a relativistic electron in strong magnetic fields satisfying ∆i � 1, γ � 1. We consider
first the condition ∆i � 1. In this case the summations in Eqs. (7)–(9) converge rapidly, so
that keeping only the term n = 0 is already a satisfactory approximation. To show this we first
integrate over the azimuth angle φ and retain only the leading terms, then the differential cross
section (1) is reduced to

dσ = σ (∆i, θi, γ, θf ) sin θfdθf , (10)

where

σ (∆i, θi, γ, θf ) =
πr2

0
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in which
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and J0 (ζ) is the zeroth order Bessel function. It is worth pointing out here that the approx-
imation (12) can also be justified by considering the nonrelativistic limit in the ERF (γ = 1
or β = 0). In fact, under the Thomson limit (∆f ≈ ∆i � 1) it is easy to see that J0 (ζ) ≈ 1,
A− = −A′− ≈ 4∆i, B1 = B2 ≈ 0 and A+ = −A′+ ≈ 4∆i, then Eq.(11) can be simplified to

σ (∆i, θi, θf )
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1
4

(
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) (
1 + cos2 θf

) [
∆2
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∆2
i
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]
, (15)

which is just Herold’s nonrelativistic result, a well known widely used expression. However,
Eq. (11) together with Eq. (12) is also valid for the relativistic case.

In the following we use this simplified cross section to calculate the spectrum function of
the magnetic inverse Compton scattering. In the present paper, we concentrate our attention
on the scattering by a monochromatic (γ) electron beam. The density of scattered photons per
unit time is

dN (γ)
dt

= ne

∫
sin θidθi

∫
sin θfdθf

∫
n (∆i) d∆i (1− β cos θi) σ (∆i, θi, γ, θf )f (cos ϑi) , (16)
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where ne is the density of the electron beam and f (cos ϑi) an anisotropic factor for the incident
photons. If the incident photons are isotropic, then f (cos ϑi) = 1. Taking into account energy
conservation and the condition ∆i � 1, it is easy to derive

sin θfdθf = −γ (1− β cos θf ) + ∆i (1− cos θi cos θf )−∆f sin2 θf

∆f (γ −∆f cos θf )
d∆f . (17)

With substitution of this variable transformation in Eq.(16), the spectrum of power density per
unit scattered photon energy of a low frequency photon gas scattered by the monochromatic
electron beam can be derived:
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dtd∆f

= 8πr2
0ne

∫
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is just the desired spectrum function. Now we take into account the condition γ � 1, and then
it is easy to show

A− = [2γ −∆f (1 + cos θf )]∆ir,

A′− = − [2γ −∆f (1 + cos θf )]∆fr,
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)
,
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and the spectrum function can be simplified accordingly to
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and Γ0 is related to the inverse life time of an electron in intermediate states which is usually
estimated according to the transition rate of an electron from the first Landau level to the
ground state (Daughergy & Vantura 1978), that is, Γ0 = 2

3α (B/Bc)
2 with α the fine structure

constant. In obtaining Eq.(21), use has been made of the following approximation

[2γ −∆f (1 + cos θf )]2

4 (γ −∆f ) (γ −∆f cos θf )
≈ 1 . (24)

To see this we note that ∆f reaches maximum only at θf = 0 and θi = π, so ∆f � γ if θf

is not close to zero and then Eq. (24) holds; if θf is close to zero, then it is clear that Eq. (24)
is also valid, thus the approximation is justified. It can be shown that ∆f sin θf can also be
neglected if there are other dominant terms. Using again the energy conservation, we get the
following approximate expression,[

1− β cos θf +
∆i

γ
(1− cos θi cos θf )

]
∆f = (1− β cos θi) ∆i . (25)

For further simplification, we consider the case where θf is not close to zero, then Eq. (25) can
be simplified to

(1− β cos θf ) ∆f = (1− β cos θi) ∆i . (26)

This means that the Doppler frequencies of the incident and scattered photons are equal,
∆ir = ∆fr, which is just the Thomson limit in the LF. Equation (25) tells us also that the
highest scattered photon energy is of magnitude (1 + β)2 γ2ωi/ (1 + 2 (1 + β) γ∆i) ≈ 4γ2ωi

/ (1 + 4γ∆i), which becomes 4γ2ωi for γ∆i � 1. This is a well-known feature of inverse
Compton scattering. Applying the Thomson limit Eq. (26) and expanding J0 (ζ) up to ζ2,
Eq. (22) is reduced to

Y ′
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C∆2
ir

(∆ir −∆0)
2 + Γ2

+
C∆2

ir

(∆ir + ∆0)
2

+(sin θi sin θf )2 + 0.5 [∆ir (1 + cos θi) (1 + cos θf ) Bc/B]2 , (27)

where the coefficient C is defined by

C =
(
1 + cos2 θi

) (
1 + cos2 θf

)
+ 2

(
1 + cos θi cos2 θf

)
. (28)

Setting x = (1− cos θi) ≈ (1− β cos θi), with its lower limit being determined by Eq. (25)

xmin ≈
∆f

2γ2∆i (1−∆f/γ)
, (29)

the spectrum function can be expressed as

F = F1 + F2 + F3 , (30)

in which
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F2 =
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(
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f (1− x) , (33)

where, ωr =
ωf

ωi
, a0 =

ω0

γωi
, Γ = 2α (B/Bc)

2
/3γ2∆i, and c (x) can be read from Eq. (28),

c (x) =
(
2− 2x + x2

) (
2− 2x

ωr
+

x2

ω2
r

)
+ 2

[
1 + (1− x)

(
1− x

ωr

)2
]

. (34)

A simple investigation will show that F2 is much smaller than F1 or F3. So the dominant
contribution to the spectrum function is from F1 and F3. Resonant scattering occurs when
xmin ≤ a0 ≤ 2 is satisfied where F1 becomes very large. This means that resonant scattering
becomes operative when the following conditions are satisfied:

ω0

γωi
≤ 2 and

ω0

γωi
≥ ωf

2γ2ωi (1−∆f/γ)
,

which can be expressed alternatively by

ωi ≥
ω0

2γ
and ωf ≤

2γω0

1 + 2∆0
. (35)

For simplicity only, we consider, from
this point on, the isotropic case, i.e.,
f (1− x) = 1. Then the spectrum func-
tion can be plotted for different magnetic
field strengths as in Fig. 1, where ε is the
reduced energy of scattered photons, ε =
ωf/4γ2ωi. This figure shows that the ef-
ficiency of resonant scattering (for small
B fields) is much higher than that of non-
resonant scattering (for large B fields). We
should point out here that the contribu-
tion of F3 is usually smaller than F1, even
for the non-resonant scattering. However
when a0 < xmin, i.e., ωf > 2γω0

1+2∆0
, F3

will play an important role in the non-
resonant scattering (see Fig. 4). It is seen
from Eq. (35) that the maximum energy of
scattered photon resulting from the mag-
netic resonant scattering is given by

ωres =
2γω0

1 + 2∆0
, (36)

Fig. 1 Spectral function of the magnetic in-

verse Compton scattering. The scattered pho-

ton energy is a reduced one (ε = ωf/4γ2ωi).

It is seen that the weaker is the B field, the

larger is the function value (i.e., the higher is

the scattering efficiency).

which depends on the incident electron energy and the magnetic field, but is independent of
the incident photon energy.
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3 INVERSE COMPTON SCATTERING OF THERMAL PHOTONS ON THE
SURFACE OF A PULSAR

Due to the high temperature near the cap of a pulsar, T ∼ 106 K, there is a large number
of soft X-ray photons resulting from thermal radiation. On the other hand, there are also high-
energy electron beams in the magnetosphere produced by electrostatic acceleration. According
to Eq. (35), these two conditions make it possible to produce hard X-ray and γ-ray emissions on
the surface of a strongly magnetized pulsar through the resonant magnetic Compton scattering.

The spectrum of black body radiation is

n (ωi) dωi =
1
π2

ω2
i

e
ωi
kT − 1

dωi . (37)

Then the power density of scattered photons per unit scattered photon energy can be expressed
as

dP (ωf )
dωf

= 8πr2
0ne

∫
n (ωi) dωiF (γ,ωi, ωf ) . (38)

Alternatively, the scattered photon density per unit scattered photon energy and per unit time
is

dN (ωf )
dωfdt

= 8πr2
0ne

∫
n (ωi) dωiF (γ,ωi, ωf ) /ωf . (39)

In the actual calculations, we assume T = 106 K and γ = 100 which are typical values
for pulsars. Besides, for simplicity but without loss of generality, we set ne = 1. Due to the
resonant scattering condition ωi ≥ ω0/2γ, only a small portion of thermal photons in Eq. (37)
contribute to the resonant scattering if the magnetic field is very strong. A simple estimation
shows that the non-resonant scattering is dominant if B > 0.3Bc. On the other hand, if the
magnetic field is relatively weak, B < 0.3Bc, then the resonant scattering is dominant.

We consider first the power spectrum of scattered photons. Figures 2a, 2b, and 2c are
plotted according to Eq. (38) for different values of the magnetic field strength. Figures 2a
and 2b assume that, far away from the resonant region (B ≥ 0.5Bc), soft X-ray photons are
hardened to γ-ray photons mainly through the non-resonant scattering and the shape of the
spectrum is similar to that of a black body. In Fig. 2c the magnetic field is relatively weak
(B = 0.34Bc) and resonant scattering begins to act, the power spectrum of scattered photon
differs remarkably from that of the black body radiation, i.e., the distribution of scattered
photons is shifted to the high-energy end due to the increase of the scattering efficiency. This
fact indicates that the strength of magnetic field plays an important role in the magnetic inverse
Compton scattering.

Next we consider the spectrum of the scattered photon number for the non-resonant case.
Following Daugherty and Harding (1989), the magnetic field near the pole on the surface of
the neutron star is assumed to have a dipole configuration B = B0 [r0/ (r0 + z)]3 where r0 is
the radius of the star and z is the height above the star and B0 = 1.14Bc. Based on Eq. (39)
the rate of scattered photon density is calculated from z = 0.05r0 up to z = 0.5r0 with a step
∆z = 0.05r0 and the results are shown in Fig. 3. It shows that, as the magnetic field becomes
weaker, the rate of production of high-energy photons goes up. This means that the energy-
loss of electrons in the process of magnetic Compton scattering increases as the magnetic field
strength decreases. It is worth pointing out here that all three figures have a common upper
limit for the scattered photon energy, ωf max = 4γ2ωi/ (1 + 4γ∆i), which is the highest photon
energy in the nonmagnetic Compton scattering.
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Fig. 2 The power density spectra due to Comptonization of thermal photons by monoenergetic
injected electrons at γ = 100 for T = 106 K and different B fields. The spectra in Figs. 2a and
2b with B = 0.5 Bc have a shape similar to that of the black body radiation. While Fig. 2c with
B = 0.34 Bc differs from remarkably from black body radiation due to the shift of distribution
of photons to the high-energy end.

Now we check the rate of scattered photon density for the resonant case. Results of numer-
ical calculations are shown in Fig. 4, for the magnetic field strength B0 = 0.2Bc. This figure
differs considerably from corresponding figure (figure 9) in Daugherty and Harding’s paper.
First, each resonant scattering has its own maximum ωres (depending on B), beyond which
the scattered photon number decreases sharply and the high-energy tail begins. While in fig. 9
in Daugherty and Harding’s paper every resonant scattering terminates at a common point
(independent of B) which seems to be the highest scattered photon energy, and there are no
high-energy tails. In fact the high-energy tails in Fig. 4 result from the non-resonant Compton
scattering, which is closely related to the magnetic term as mentioned at the end of Section
2, the weaker the magnetic field is, the more important the magnetic term and the longer the
tail will be. Also, the highest scattered photon energy ωf max, the same in Figs. 1–3, is much
higher than that obtained by Daugherty and Harding (1989). Though the photon production
rate in the high-energy tail is much smaller than in the resonant part, it indicates that the
magnetic inverse Compton scattering can yield a much higher photon energy than that ob-
tained by Daugherty and Harding. However it might be that only few photons with energies
higher than the threshold could escape due to the production of electron-positron pairs through
several channels, for example, through the collision of a high-energy photon with a low-energy
one (Lightman & Zdziarski 1987), or the production by single photons in strong magnetic fields
(Daugherty & Harding 1987).
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Fig. 3 The spectra of the rate of scattered

photon density per scattered photon energy,

assuming monoenergetic injected electrons at

γ = 100 for B0 = 1.14 Bc and T = 106 K.

Spectra are plotted from 0.05 r0 up to 0.5 r0

with ∆z = 0.05 r0.

Fig. 4 The spectra of the rate of scattered

photon density per unit scattered photon en-

ergy, assuming monoenergytic injected elec-

trons at γ = 100 for B = 0.2 Bc and T =

106 K. Spectra are plotted from 0.05 r0 up to

0.5 r0 with a step ∆z = 0.05 r0. The flat part

comes from the resonant scattering and the

high-energy tails result from the non-resonant

scattering which is closely related to the mag-

netic term.

To conclude, we have recalculated the spectrum function of magnetic inverse Compton
scattering in the laboratory frame. A new term, the magnetic term, is obtained which is
absent in the previous work. With help of this new spectrum function the Comptonization
of thermal photons at the surface of a magnetized neutron star is investigated. Compared
with previous numerical simulations (Daugherty & Harding 1989), our calculated spectrum for
scattered photons shows that every resonant scattering has its own field-depending terminate
point beyond which there is a high-energy tail which is closely related to the magnetic term.
It is shown also that all the high-energy tails have a common terminating point, the highest
scattered photon energy, which is much higher than that obtained by above mentioned numerical
simulations.
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