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Abstract Quantities characterizing temporal property, e.g., power density, co-
herence, and time lag, can be defined and calculated directly in the time domain
without using the Fourier transformation. Spectral hardness, variability duration,
and correlation between different characteristic quantities on different time scale can
be studied in the time domain as well. The temporal analysis technique in the time
domain is a powerful tool, particularly in studying rapid variability on short time
scales (or in high frequencies). Results of studying variabilities of X-rays from Cyg
X-1 with the analysis technique in the time domain and RXTE data reveal valu-
able clues to understanding production and propagation processes of X-rays and
structure of accretion disk in the black hole system.
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1 INTRODUCTION

Studying short time scale variability of the X-ray emission of black-hole systems and low-
mass X-ray binaries is an important approach to understanding the emitting region and emission
mechanism of high-energy photons. The time-averaged spectra of hard X-rays from Cyg X-1
and other black-hole candidates are relatively well explained in terms of a simple model: hard
X-rays result from the Comptonization of soft photons in a hot electron cloud of constant
temperature and optical depth (e.g. Shapiro, Lightman & Eardley 1976; Sunyaev & Titarchuk
1980). It is difficult to learn more about the process of high-energy emission in these objects
if we have only the spectral information. Complex rapid fluctuation of the X-ray emission is a
common characteristic of black-hole systems and low-mass X-ray binaries (van der Klis 1995).
Some properties of aperiodic variability of X-rays from Cyg X-1 revealed by timing analysis,
e.g., time lags (Miyamoto et al. 1992; Cui et al. 1997; Crary et al. 1998; Nowak et al. 1999)
and coherence (Vaughan & Nowak 1997; Cui et al. 1997) between different energy bands, are
difficult to interpret by the simple Comptonization model and provide strong constraints on
theoretical models, which are attracting an increasing amount of attention.
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The Fourier spectrum technique is most widely used in timing analysis. Let x(tk) be the
photon counts during a time interval (tk, tk + ∆t), where tk = k∆t, k = 0, 1, ..., N − 1, and
T = N∆t the observation duration. The discrete Fourier transform of the time series (light
curve) x(tk) is

X(fj) =
∑

k

x(tk)e−i2πfjk∆t, fj = j/T . (1)

The Fourier power spectrum is usually used to describe the variation amplitude at different
frequency fj ,

Pj = |X(fj)|2 . (2)

From two counting series, x1(tk) and x2(tk), observed simultaneously in two energy bands
at times tk, and their Fourier transforms X1(fj) and X2(fj), one can construct the cross
spectrum C(fj) = X∗

1 (fj)X2(fj), with argument the phase difference between the two processes
at frequency fj , or the time lag of photons in band 2 relative to that in band 1,

τ(fj) = arg[C(fj)]/2πfj . (3)

Dividing the light curve into several segments and calculating their Fourier spectra and cross
spectra for each segment, the coherence coefficient is then defined as

r(f) =
|〈C(f)〉|√

〈|X1(f)|2〉〈|X2(f)|2〉
, (4)

where angle brackets denote an average over the segments. The coherence coefficient is used as
a measure of the degree of linear correlation between the two time series at a Fourier frequency
f . If the ratio of two Fourier transforms at a frequency f , H(f) = X2(f)/X1(f), is the same
for all segments of the two processes, or, equivalently

x2(t) =
∫

h(t− τ)x1(τ)dτ , (5)

then
r(f) = 1 . (6)

The processes are said to be coherent at frequency f .
Quite a number of important results in the study of spectrum structure, hard X-ray lags

and coherence between high and low energy bands of X-rays from Cyg X-1 and other objects
have been obtained with the above Fourier techniques. However, Fourier analysis cannot replace
studying variability directly in the time domain. Except periodic and quasi-periodic processes,
there is no direct correspondence between a structure in the Fourier spectrum and the physical
process on a certain time scale. The power density, time lag or coherence at a given Fourier
frequency can result from contributions by different processes on different time scales. In
addition, the Fourier transformation is sensitive to dead times and data gaps caused by various
reasons; and the window effect limits the performance of Fourier technique in studying rapid
variability in high frequency region.

Without using the Fourier transformation, we can also calculate quantities characterizing
temporal property, e.g., power density, time lag and coherence between different energy bands,
and, furthermore, we can study the hardness ratio, variability duration and correlation between
different quantities on different time scales directly in the time domain. In Section 2 various
characteristic quantities are defined and applied to analyzing light curves of Cyg X-1 observed
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by RXTE. In Section 3 the coherence and spectral hardness of shot component on different time
scales are studied. Our results show that with the aid of timing analysis in the time domain,
important characteristics of physical processes on different time scales can be revealed, and
that the timing technique in the time domain is particularly powerful in studying variability
behavior on short time scales (or in high frequencies). Relevant discussions are made in Section
4.

2 CHARACTERISTIC QUANTITIES IN THE TIME DOMAIN

In this section we define some quantities characterizing temporal property of emission on a
given time scale in the time domain, including the power density, time lag, variability duration,
coherence, and explain how to apply them to the study of rapid variability through analyzing
light curves of Cyg X-1 in different emission states observed by RXTE. For a given time scale
∆t, we produce a counting series (light curve) x(k) with time step ∆t. The time series x(k)
is divided into M segments, each segment includes N successive counts. From the N counts
x(i0 + 1), x(i0 + 2), ..., x(i0 + N) of segment i, we calculate the quantity under study,

y(i) = f(x(i0 + 1), x(i0 + 2), ..., x(i0 + N)), i0 = (i− 1)N . (7)

After obtaining M values of y from M data segments, the average ȳ and its standard deviation
σ(ȳ) can be derived:

ȳ =
1
M

M∑
i=1

y(i) , σ(ȳ) =

√√√√ M∑
i=1

(y(i)− ȳ)2/M(M − 1) . (8)

Usually we can use some convenient statistical methods based on the normal distribution to
make statistical inference, e.g. significance test, on ȳ. For the case of short time scale ∆t,
although the number x of counts per bin may be too small for it to be assumed as a normal
variable, it is easy from a certain observation period to get the total number M of segments
large enough to satisfy the condition for applying the central limit theorem in statistics and
using the normal statistics for the mean ȳ.

2.1 Power Density

Let x(k) is a counting series obtained from a time history of observed photons with a time
step ∆t, r(k) is the corresponding counting rate series, the variation power in the light curve
x(k) is

P (∆t) =
Var(x)
(∆t)2

=
1
N

∑N
k=1(x(k)− x̄)2

(∆t)2
=

1
N

N∑
k=1

(r(k)− r̄)2 rms2 , (9)

where x̄ =
∑N

k=1 x(k)/N, r̄ =
∑N

k=1 r(k)/N . The power P (∆t) of a certain series of photon
events is a function of the time step ∆t. It is obvious that the variation on a time scale small
than ∆t makes no contribution to the power P (∆t), but variation on a time scale greater
than or equal to ∆t does. The power density p(∆t) in the time domain can be defined as
the rate of change of P (∆t) with respect to the time step ∆t. From two powers, P (∆t1) and
P (∆t2), at two time scales, ∆t1 and ∆t2 and ∆t2 > ∆t1, we can evaluate the power density at
∆t = (∆t1 + ∆t2)/2 approximately by

p(∆t) =
P (∆t1)− P (∆t2)

∆t2 −∆t1
rms2 s−1

. (10)



316 T. P. Li

For a noise series where the x(k) follow the Poisson distribution the noise power

Pnoise(∆t) =
Var(x)
(∆t)2

=
〈x〉

(∆t)2
=

r

∆t
rms2 , (11)

where r is the expectation value of counting rate which can be estimated by the global average
of counting rate of the studied observation. The noise power density at ∆t = (∆t1 + ∆t2)/2

pnoise(∆t) =
Pnoise(∆t1)− Pnoise(∆t2)

∆t2 −∆t1
=

r

∆t1∆t2
rms2 s−1

. (12)

The signal power density can be defined as

psignal(∆t) = p(∆t)− pnoise(∆t) rms2 s−1
, (13)

and the fractional signal power density

p′signal(∆t) =
psignal(∆t)

r2
(rms/mean)2s−1 . (14)

To study the signal power density in the time domain over a background of noise in an
observed photon series, we divide the observation into M segments. For each segment i the
signal power density pi,signal(∆t) is calculated by Eq. (14) and then the average power den-
sity of the studied observation p̄s =

∑M
i=1 pi,signal/M and its standard deviation σ(p̄s) =√∑M

i=1(pi,signal − p̄s)2/(M(M − 1)).
Two kinds of signal are used to compare the powers so defined with the Fourier spectrum.

One is a triangular signal s(t) with a period of 5 s and peak rate of 1000 cts s−1. From s(t) it
is easy to make the light curve of pure signal with any time step, as shown in the top panel of
Fig. 1 for a piece of the signal light curve with ∆t = 0.01 s, and to calculate the expected signal
power density spectrum in the time domain, shown by the solid line in the bottom panel of
Fig. 1. A simulated 1000 s light curve x(k) with time step 1 ms is made by a random sampling
of the theoretical light curve of signal with Poisson fluctuation plus a Poisson noise with mean
rate 5000 cts s−1. The middle panel of Fig. 1 shows a piece of the light curve with ∆t = 0.01 s
obtained from the simulated 1 ms light curve. For each segment of the simulated light curve
we calculate the total power density p(∆t) by Eqs. (9), (10) and the noise power density
pnoise(∆t) by Eq. (12), then get the signal power density psignal(∆t) = p(∆t) − pnoise(∆t). In
the bottom panel of Fig. 1 the plus signs mark the average signal power densities at different
time scales. For the same light curve of 1 ms time bin we also calculate the Leahy density
w(fj) = 2|Xj |2/X0 for each T = 4.096 s segment where Xj is the Fourier amplitude at frequency
fj = j/T determined from a 4096-point FFT. It is well known that the noise Leahy density
wnoise = 2, so the signal Leahy density wsignal(fj) = w(fj) − 2 and the Fourier signal power
density pF,signal(fj) = wsignal(fj)X0/T . The dashed line in the bottom panel of Fig. 1 shows
the average Fourier signal power density as a function of timescale ∆tj = 1/fj obtained with
the transformation p(∆tj) = pF (fj)f2

j . From Fig. 1 we can see that the signal power densities
determined by Eqs. (9)–(13) can reflect the real power distribution in the triangular signal in the
time domain but that those by the Fourier analysis cannot. The structures in the representation
of Fourier power spectrum in the time domain, e.g., the peak at the short time scale region of
∆t < 0.03 s, are needed by the mathematical construction of the light curve with sinusoidal
functions, but they do not represent the real signal powers in processes occurring in the time
domain.
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Fig. 1 Distribution of power density vs. time scale of a periodic triangle signal. Top panel:

the signal. Middle panel: simulated data = signal + Poisson noises. Bottom panel: signal

power densities. Solid line – theoretical distribution of variation power densities expected by

the signal. Dashed line – excess Fourier spectrum after subtracting the noise spectrum. Plus –

excess power densities calculated by the timing technique in the time domain.



318 T. P. Li

The other kind of signal examined is a stochastic process. We use an autoregressive (AR)
process of first order u(k) = a · u(k − 1) + ε to make the signal light curve s(k) with time bin
∆t = 0.01 s, s(k) = c · u(k) + rs∆t, shown in the top panel of Fig. 2, where the relaxation time
τ = −∆t/ log |a| = 0.1 s, ε is a Gaussian random variable with mean 0 and variance 1, the mean
rate of signal rs = 2000 cts s−1 and c = 4.8. The final observed light curve x(k) = s(k) + n(k)
with n(k) a Poisson noise with mean rate 5000 cts s−1, shown in the middle panel of Fig. 2.

To partly eliminate the contribution of the system noise ε, we use s′(k) = c ·u(k−1)+rs∆t

instead of s(k) to calculate the intrinsic power density of signal. In the bottom panel of Fig. 2
the solid line shows the expected variation power density distribution of the signal s′(k), the
plus signs indicate excess power densities in the light curve x(k) estimated by Eqs. (9)–(13) and
the dashed line by FFT. Figure 2 shows that the proposed procedures in the time domain are
able to extract variation powers in a stochastic process from noisy data and obtain an excess
power spectrum more exactly than by using the Fourier spectral representation. The Fourier
spectrum significantly underestimate the signal powers in the region of short time scales (high
frequency region) and overestimate those in the region of long time scales.

Now we make a power spectral analysis in the time domain for different states of Cyg X-1 X-
ray emission. On 1996 May 10 (day 131 of 1996) the All-Sky Monitor on the Rossi X-ray Timing
Explorer (RXTE) revealed that Cyg X-1 started a transition from the normal hard state to a
soft state. After reaching the soft state, it stayed there for about two months before going back
down to the hard state (Cui et al. 1997). During this period 11 pointing observations of Cyg
X-1 were made by RXTE. We use one observational run of PCA detector on-board RXTE for
each of the four states of Cyg X-1, hard-to-soft transition, soft, soft-to-hard transition and hard.
The total duration of each run is about 2000 s. For 18 time steps between 0.001 s and 2.5 s, we
make the corresponding light curves in the 2–13 keV band, and pick out all the ineffective data
points caused by failure in the satellite, detector or data accumulation system. The effective
data of an observation are divided up into M equal segments with N = 100 data points each.
If the segment number M < 100 in the case of large time scale, let M = 100 and decrease the
number N of data points in each segment accordingly. For each segment of the light curve with
time bin ∆t1, we calculate the powers at two time scales ∆t1 and ∆t2 = 2∆t1 by Eq. (9) and the
power density at ∆t = 1.5∆t1 by Eq. (10). The corresponding noise power density is calculated
by Eq. (12) with r set equal to the average observed counting rate. The plus signs in Figure
3 show the distributions of the average signal power density of Cyg X-1 calculated directly in
the time domain for four RXTE observations. All but one of the power densities of Cyg X-1
shown in Fig. 3 have statistical significance s = p̄s/σ(p̄s) > 10. The narrow panel under each
plot of Cyg X-1 in Fig. 3 shows the corresponding results of a fake light curve of Poisson noise
with mean the average rate r of the observed Cyg X-1 light curve. For each observation and
each time step ∆t studied 1000 fake light curves are produced and their signal power densities
are calculated. In a total of 72 000 trials the number of events with significance s ≥ 2 is 1561
(the expectation from the normal distributions is 1638 ), 107 with s ≥ 3 (expectation 97.2),
2 with s ≥ 4 (expectation 2.3) and no event has s ≥ 5. Therefore s = p̄s/σ(p̄s) can be seen
approximately as a standard normal variable and be used in statistical significance tests. The
corresponding Fourier power densities of each Cyg X-1 observations are also shown in Fig. 3
(dots). The Fourier spectra are significantly lower than the power spectra of time domain in the
time scale region of ∆t < 0.1 s, which is not a surprise as the rapid variability of Cyg X-1 can be
described by an AR process with a relaxation time τ of about 0.1 s approximately (Pottschmidt
et al. 1998), and as we show above that the Fourier spectral representation significantly under-
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Fig. 2 Distribution of power density vs. time scale of a signal of AR process. Top panel: the

signal. Middle panel: simulated data = signal + Poisson noises. Bottom panel: signal power

densities . Solid line – theoretical distribution of variation power densities expected by the

signal. Dashed line – excess Fourier spectrum. Plus – excess power densities calculated by the

timing technique in the time domain.
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Fig. 3 Fractional signal power density vs. time scale of Cyg X-1 in different state calculated directly

in the time domain (plus) and through the Fourier transformation (dot). The narrow panel under

each plot of Cyg X-1 shows the fractional signal power densities calculated in the time domain for

a fake light curve of Poisson noise with mean as the average counting rate of the observed Cyg X-1

light curve.
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estimate the powers of AR process in the region of time scale shorter than the relaxation time.
Comparing the two kinds of power density spectra, the Fourier spectrum and the spectrum
analyzed in the time domain, may help reveal intrinsic nature of the radiation process under
study. The two kinds of spectra have been derived for a sample of X-ray binaries. The results
show that the property that the Fourier spectra is significantly different from the power spectra
of time domain in the short time scale region is found in the black hole binaries but not in the
neutron star binaries. Figure 4 shows, as an example, for the neutron star binary 4U0614+091
the power density spectra analyzed both in the time and frequency domain. The complete
results will be reported in a separate paper.

To show the shapes of power spectra more clearly we multiply the signal power densities
by the corresponding time scales and draw the distributions of ps(∆t) · ∆t for four different
states of Cyg X-1 in Figure 5. As indicated in Fig. 5, the distribution shapes of power spectra
of the soft and hard states are similar to each other and the absolute sizes of power densities
are greater for the soft state than for the hard state, although the fractional power densities of
the soft state are smaller. The power densities of the transition states are distributed closely to
those of the soft state in the time scale region of ∆t < 0.1 s, but the two diverge in the region
of ∆t > 0.1 s

Fig. 4 Fractional signal power density vs.

time scale of the neutron star binary

4U0614+091 3−20 keV X-rays analyzed in the

time domain (plus) and in the frequency do-

main (dot). The analyzed data was observed

by PCA/RXTE on April 30, 1998.

Fig. 5 Distributions of signal power density p̄s

multiplied by time scale ∆t of different states

of Cyg X-1.

2.2 Hardness

For two light curves x1 in the energy band 1 and x2 in band 2 with the same time step ∆t,
and under the condition that both x1(i) and x2(i) in the same bin i are greater than zero, we
can calculate a hardness ratio,

hi =
x2(i)
x1(i)

. (15)
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The average hardness ratio and its standard deviation on the time scale ∆t can be derived from
a series of hi. To check the utility of the above definition of hardness we calculate h(∆t) for two
fake light curves of Poisson noise, which are created by the standard RXTE ftools with mean
intensity 6.7 cts ms−1 for channel 1 and 3.3 cts ms−1 for channel 2 respectively. The light curve
length is 2000 s in the case of ∆t ≥ 0.05 s and 200 s for shorter ∆t. The left panel of Figure
6 shows the distribution of average 〈h〉 vs. ∆t for the fake light curves. From this result one
can see that Poisson noise can cause the average hardness ratio to decrease in the short time
scale region, and this ratio defined by Eq. (15) is not a suitable quantity for studying hardness
of physical process on different time scales. An alternative definition of hardness ratio is

Hi =
x2(i)− x1(i)
x2(i) + x1(i)

. (16)

Fig. 6 Hardness vs. time scale from fake light curves

The right panel of Figure 6 shows the distribution of 〈H〉 vs. ∆t from the fake light curves,
where the hardness ratio keeps constant, indicating that the ratio H defined by Eq. (16) is a
proper quantity for studying spectral hardness on different time scales. The statistical averages
of the hardness ratio Hi defined by Eq. (16) for four RXTE observations of Cyg X-1 and
different time scales are calculated and shown by the filled circles in Figure 7.

2.3 Coherence

Let {x1}, {x2} be two background-subtracted light curves with time step ∆t for the energy
bands 1 and 2, respectively. Divide each of two light curves {x1}, {x2} into several segments, the
corresponding segments in different energy bands have the same time interval. For a segment i

the following coefficient may be used to measure the degree of linear correlation, i.e. coherence,
between the two bands

rx(i) =
∑

j

x1(j)x2(j)
/√∑

j

x2
1(j)

∑
j

x2
2(j) . (17)
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Fig. 7 Hardness ratio of different component vs. time scale of Cyg X-1. Filled circle: total
light curve. Plus: shot component. Circle: steady component.

The summations in Eq. (17) are only taken over such bins in which both counts are effective and
greater than zero. After calculating the average and its standard deviation for each segment,
the final result rx(∆t) = r̄x and its error for the observation concerned can be derived, where
∆t is the time step of light curves. The left panel of Figure 8 plots the distribution of rx

vs. ∆t from the fake light curves. As the values of rx(∆t) from the fake light curves are
significantly greater than zero in the time scale region considered, the quantity rx(∆t) defined
by Eq. (17) is not a proper one for describing the correlation property between two light curves.
The difference sequences d1(j) = x1(j +1)−x1(j), d2(j) = x2(j +1)−x2(j) may more suitable
than the original light curves x1(j), x2(j) for studying correlation property of variabilities in
two channels. For a group i of differences the coherence coefficient can be defined as

rd(i) =
∑

j

d1(j)d2(j)
/√∑

j

d2
1(j)

∑
j

d2
2(j) . (18)
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The right panel of Figure 8 plots the distribution of rd vs. ∆t from the fake light curves. That
all the values of rd(∆t) from the fake light curves are near zero indicates that the coherence
coefficient rd(∆t) can be used to measure the correlation of variabilities other than statistical
fluctuation in the two time series.

Fig. 8 Coherence vs. time scale of fake light curves

The filled circles in Figure 9 show the coherence rd(∆t), evaluated by Eq. (18) for X-rays
between energy bands 2–6.5 keV and 6.5–13 keV (or 2–5 keV and 5–13 keV for the hard state) of
Cyg X-1 as a function of the time scale. From Fig. 9 one can see that when time scale ∆t > 0.1 s
the intensity variabilities in two energy bands are nearly in perfect coherence, rd(∆t) ' 1, for
all states. It should be noted that unity coherence in the time domain, rd(∆t) = 1, indicates a
linear correlation between the variabilities of intensity in the two energy bands, d2(t) = hd1(t),
where h is a constant during the observation, which is a stronger constraint than Eq. (5) from
unity coherence, r(f) = 1, in the frequency domain.

2.4 Time Lag

Correlation analysis is a technique for studying relative time delays between two energy
bands. For two groups of data x1(i), x2(i), i = 1, ..., N , in the same time period the cross-
correlation function (CCF) of the zero-mean time series is usually defined as

CCF(k) =
∑

i

v1(i)v2(i + k)/σ(v1)σ(v2) , (k = 1,±1, ...) (19)

where v(i) = x(i) − x̄, σ2(v) =
∑

i[v(i)]2. The corresponding time lag of CCF(k) is τ = k∆t,
where ∆t is the width of a time bin. With the traditional CCF defined above, it is difficult
to measure time lags τ ≤ ∆t. To get necessary resolution for time lags we modify the above
definition of CCF so that we can use any value δt for the time lag (Li, Feng & Chen 1999). On
a time scale ∆t the modified cross-correlation function MCCF(τ) at time lag τ is defined as

MCCF(τ) =
∑

i

v1(i∆t)v2(i∆t + τ)/σ(v1)σ(v2) (20)
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where v(t) = x(t) − x̄, x(t) is the counts in the time interval (t, t + ∆t). Then, we can use a
time lag step δt smaller than the time scale under study ∆t, δt < ∆t, and evaluate the values
of MCCF(τ) at τ = kδt, k = 0,±1, .... If the function MCCF(k)/MCCF(0) has maximum at
k = km, the time delay of the energy band 2 relative to the band 1 Λ = kmδt.

Fig. 9 Variability coherence of different component vs. time scale of Cyg X-1. Filled circle:

total light curve. Plus: shot component. Circle: steady component.

To test the utility of the above MCCF technique of estimating time lags we produce two
photon event series of length 1000 s with a known time lag between them. The series 1 is a
white noise series with average rate 1000 cts s−1. The series 2 consists of the same events in
series 1 but each event time is delayed 5 ms. Besides the signal photons mentioned above, the
two serieses are given additional independent noise events at average rate 100 cts s−1. We use
Fourier cross spectrum with 1 ms light curves and 4096-point FFT and MCCF in the time
domain to estimate the time lags between the two serieses at time scales ∆t from 1 ms to 2 s
(in Fourier analysis we take Fourier frequency f = 1/∆t) and show the results in Figure 10.
From Fig. 10 one can see that the Fourier analysis fails for the short timescale region (∆t from
1 ms to 0.02 s or f from 50Hz to 1000 Hz) but the MCCF in the time domain is successful.
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Fig. 10 Time lag vs. time scale of two light curves of white noise with 5 ms time lag. Circle

and dashed line: calculated by Fourier cross spectrum. Plus and dotted line: by modified

cross-correlation function in the time domain.

Fig. 11 Hard X-ray lag vs. time scale of Cyg X-1
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We calculate time lags between the 2–6.5 keV and 6.5–13 keV energy bands (or 2–5 keV and
5–13 keV for the hard state) for different time step light curves of Cyg X-1 in different states
observed by PCA/RXTE. The search for the maximum of MCCF is performed in the region
of time lag τ within 0± 1.5∆t for a given time scale ∆t. The obtained time lag distributions of
Cyg X-1 in its different states are shown in Figure 11. In the calculation one run of observation
is divided into several groups. For short time scale the fluctuation of counts in a bin is large
and a greater number of data points N per group is needed to obtain a reliable value of MCCF.
For this purpose we let each group to satisfy the condition of N∆t > 10 s.

2.5 Variability Duration

On a time scale ∆t the autocorrelation function of a light curve in an energy band l at a
time lag τ can be defined as

MACFl(τ) =
∑

i

vl(i∆t)vl(i∆t + τ)/σ2(vl) . (21)

Fig. 12 Variation duration (MACF width) vs. time scale of Cyg X-1. Plus: low-energy band

(2–5 keV for hard state, 2–6.5 keV for other states). Triangle: high-energy band (5–13 keV

for hard state, 6.5–13 keV for other states)
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The FWHM of MACFl(τ), Wl, can be taken as a measure of the variability duration of the
light curve. Figure 12 shows MACF widths of Cyg X-1 in different states on different time scales,
with pluses for the relative MACF widths for the low-energy band, W1/∆t, and triangles for
the high-energy band, W2/∆t. Figure 13 shows the distributions of the ratio W2/W1 of MACF
widths in the two energy bands.

Fig. 13 MACF width ratio vs. time scale of Cyg X-1

3 HARDNESS AND COHERENCE OF SHOT COMPONENT

It is interesting to see a time scale dependence of the hardness of the shot component of
Cyg X-1. We take the following procedure to distinguish the shot component of a light curve.
Divide a light curve of an observation into several groups of length 20∆t each, where ∆t is
the time step of the light curve. For a group with N1 effective counts x(t1), x(t2), ..., x(tN1),
N1 ≤ 20, produce another data group x′(t1) = x(t1), x′(t2) = x(t2), ..., x′(tN1) = x(tN1),
then: (1) fit {x′} to a quadratic polynomial f(t); (2) find the maximum point tm of x′(t)−f(t),
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let x′(tm) = f(tm); (3) calculate χ2 =
∑

i(x
′(ti) − f(ti))2/f(ti), if χ2 > (N1 − 1) then repeat

the above procedure starting from (1), until the condition of χ2 ≤ (N1 − 1) is satisfied. Let
the shot component xs(ti) = x(ti) − x′(ti), i = 1, 2, ...N1. The solid curve of the left panel of
Fig. 14 shows a group of 2–13 keV counts of Cyg X-1 in its soft state with time step ∆t = 0.1s,
the dotted curve shows the steady component, i.e., the final series of {x′} when the fitting
process stops, the dashed line is the least-square polynomial of the dotted curve. The right
panel of Fig. 14 shows the corresponding shot component. Performing the above operation for
all the data groups we obtain a light curve of the shot component, {xs}, and one of the steady
component, {x′}, of the observation on the time scale ∆t.

Fig. 14 Different components of light curve. Left: solid line - total light curve; dotted line -

steady component; dashed line - least-square polynomial of steady component. Right: shot

component

With light curves of different components we can calculate characteristic quantities for each
component individually. The hardness ratio distributions of different components of Cyg X-1
in different states are shown in Figure 7, and the variability coherence distributions in Fig. 9,
respectively. In Figs. 7 and 9 pluses indicate the average values and their statistical errors of the
shot component, circles the steady component, and filled circles the original light curve. From
these figures one can see that although the procedure of distinguishing the different components
we propose is simple, the obtained distributions of two components are quite distinct from each
other.

4 DISCUSSION

Studying variability properties on different time scales directly in the time domain is an
important approach to an understanding of the high-energy emission processes in objects. With
timing analysis in the time domain we can study, in a parallel with the Fourier technique, the
power spectrum, time lag and coherence of aperiodic variability, and study other variability
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properties, e.g. hardness distribution of different time scales and variability duration, which
are difficult to study with the Fourier technique. Although the Fourier technique is a powerful
tool in analyzing periodic and quasi-periodic processes, the Fourier spectrum is not a correct
representation of rms variations in the time domain even for a periodic signal, as shown by
Fig. 1. As a basis of the Fourier power spectral analysis the Parseval’s theorem

N−1∑
k=0

|x(tk)|2 =
1
N

N/2−1∑
j=−N/2

|X(fj)|2

simply relates the summed squared moduli of the Fourier amplitudes in the frequency domain to
the total energy of the process, and says nothing on its energy distribution in the time domain.
One must be careful in interpreting results of Fourier analyses in the time domain.

Timing directly in the time domain is useful particularly in studying short time scale pro-
cesses. Our results clearly bring out the meaningful regularities in the distributions of different
quantities studied in the short time scale region for Cyg X-1. For example, characteristic
durations significantly greater than the light curve time steps exist even in short time scale
variabilities (see Fig. 12). The hard X-ray lags (Cui et al. 1997; Nowak et al. 1999) and co-
herence (Vaughan & Nowak 1997; Nowak et al. 1999) resulting from analyzing RXTE data of
Cyg X-1 with the Fourier transform technique provide important diagnostics of the accretion
region and emission mechanism. In the high frequency region of > 30 − 50 Hz, however, the
errors in the time lags and coherence obtained from the Fourier analysis are too large to use
in quantitatively model investigates. Our results of hardness, coherence and time lags from the
analysis technique in the time domain, shown in Fig. 7, Fig. 9 and Fig. 11, have good statistics
in the short time scale region as well, which can be taken as an observational basis for studying
emission and propagation processes on millisecond time scales.

In comparison with the Fourier technique timing in the time domain has the freedom of
choosing proper statistics. For example, we use H (16) and rd (18) to describe hardness and
coherence respectively as opposed to using h (15) and rx (17), which have undesirable structures
for fake light curves of constant mean intensity and pure Poisson statistics. The timing technique
in the time domain has no rigorous requirement for continuity of data. The final value of a
characteristic quantity on a given time scale in the time domain results from values of different
data groups being statistically averaged. Continuity in observation is required only for a single
group which should be longer than the time scale under study, it does not matter how long and
how many data gaps between two used data groups. We can, in principal, use the technique in
the time domain to derive statistically meaningful results in the study of rapid variabilities of
weak sources, e.g. AGNs, by synthesizing data of different observations for a certain object.

The distributions of different characteristic quantities vs. time scale of Cyg X-1 in different
states reveal a variety of important properties of the X-ray emission process. It seems that
the whole region of time scales studied can be divided into three regions roughly with the two
division points ∆t ∼ 0.01 s and 0.1 s. The distinguishing features of time scale dependence
of variability properties, e.g. signal power density (Fig. 3), hard X-ray lag (Fig. 11), variation
width (Figs. 12, 13), harness ratio and coherence of shot component (Fig. 7 and Fig. 9) are
often different in the time scale regions of ∆t < 0.01 s, between 0.01 s and 0.1 s and ∆t >0.1 s.
At all states of Cyg X-1 in the short time scale region of ∆t < 0.01 s as the time scale decrease,
the power density of X-ray variability decreases and coherence becomes weaker. There are some
state-dependent variability properties: e.g., in the short time scale region around ∆t ∼ 0.01 s,
the variability duration of high-energy photons is shorter than that of low-energy photons in the
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transition states, but wider in the hard state, as is shown in Fig. 13. These properties should
be considered in the construction of emission models.

It is obvious that a simple Comptonization model, i.e., hard X-rays come from multiple
inverse Compton scattering of thermal photons in electron gas with high temperature, cannot
explain many of the temporal characteristics revealed by timing analysis in the time domain.
The variability duration in high-energy band being shorter in the transition states of Cyg X-1
is in contradiction to the expectation from the Comptonization process. A natural explanation
is that some seed photons of short pulses have energies already in the hard X-ray region and
the property of high-energy pulses having shorter duration is an intrinsic character of seed
pulses. It seems that the effect of spectrum, temporal property and production mechanism
of such seed photons on the observed hard X-rays cannot be ignored. The duration of short
variability in high-energy band of Cyg X-1 in the hard state is, as distinguished from the other
states and just as expected by the Comptonization process, wider than that in low-energy band.
According to the advection dominated accretion flow (ADAF) model, a large region of ADAF
with high temperature around the center black hole exists only in the hard state (see, e.g. Esin,
McClintock & Narayan 1997). Therefore the effect of Comptonization process should be most
significant in the hard state. If this is true, then the difference of variation durations between
the hard state and the other states reflects the geometry of the accretion region. In the long
time scale region of ∆t > 0.05 s, high-energy time delay increases with time scale up to above
10 ms, which is greater than the radial light crossing, sound crossing or free-fall time scales in
ADAF (this result is consistent with time lags in low Fourier frequency region from the Fourier
spectrum analysis, see Nowak et al. 1999). Besides propagation in ADAF, other processes,
i.e., heating in accretion disc or ADAF, should be considered in interpreting hard X-ray delay
on long time scale. In summary, production of hard X-rays from black hole binaries may be
related to geometric structure and physical properties of accretion region, as well as to multiple
processes with different time scales. The timing technique in the time domain is an useful tool
to expose their specific properties that are hard to be revealed by the Fourier technique.

The analysis technique in the time domain is far from being completed, it needs further
developing in various aspects. We try to distinguish different components of emission with a
simple procedure in the time domain. The fact that the shot and steady components resulted
from our procedure have quite different distributions of hardness and coherence (see Fig. 7 and
Fig. 9), indicates that such a distinguishing is meaningful: they more or less correspond to
different processes with different characters. In comparison with the values from total light
curve, the hardness ratios of the shot component of Cyg X-1 on the short time scale of ∆t <

0.01 − 0.1 s are always lower in the hard state and higher in other states, and the variability
coherence of shot component is always weaker. The hardness and coherence of the steady
component in each state of Cyg X-1 are near to the values from the total light curve. These
results should be conducive to searching and investigating different physical processes involved
in X-ray emission.
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