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Abstract The recent Galileo spacecraft explored Jupiter and its satellite system
and provided us with new geodetic data. In order to discuss the dynamical param-
eters and secular tidal effect of Io, the theory of synchronous satellite is described
in detail. Using the new geodetic data of Io, two sets of Io’s internal structure
models are constructed based on the asthenosphere assumption. The liberation pa-
rameters α, β, γ and dynamical flattening H are calculated for the models of Io.
A comparison of Io with the Moon indicates that they are quite different in many
characteristics in spite of the fact that they are approximately equal in mass and
size and that they both orbit synchronously.
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1 INTRODUCTION

Even before the great visit of the Voyager spacecraft to Jupiter, Peale et al. (1979) proposed
that Io should be intensely heated by tides. They described Io as a largely molten body with
a thin, rigid outer shell overlying a fluid interior and suggested that Io has evolved to such a
structure as a consequence of tidal heating. They also predicted that widespread and recurrent
surface volcanism would occur. The most spectacular discovery of the Voyager mission is the
existence of active volcanoes, and the volcanic material rose to heights of several hundred kilo-
meters above the surface of Io (Morabito et al. 1979; Smith et al. 1979). This phenomenon
identified tidal heating to be a potentially important energy source (Yorder 1979) and supported
Peale et al.’s view. The 1980s saw the emergence of two important assumptions regarding the
internal structure, what Ross et al. (1990) described as the deep mantle model and astheno-
sphere model. In the deep mantle model, an elastic lithosphere up to tens of kilometers thick
is supposed to cover a hot, low-Q, and near-solid mantle (Ross & Schubert 1986; Ojakangas &
Stevenson 1986; Segatz et al. 1988; Fischer & Spohn 1990). In the alternative asthenosphere
model, first proposed by Schubert et al. (1981), the mantle is decoupled from the lithosphere
by a thin and partially molten asthenosphere. Comparing the calculated topography with the
observed result, Ross et al. (1990) considered the asthenosphere model to be the better one. In
the 1990s, the Galileo spacecraft re-explored Jupiter and its satellites, gathered more precise
geodetic data (Anderson et al. 1996). A magnetic signature was discovered at Io (Kivelson et
al. 1996).
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In this paper, on the assumption of the asthenosphere model and with reference to the
results regarding the terrestrial planets and the Moon (Zhang 1994; Zhang & Zhang 1995), we
use the new geodetic data of Io (see Table 1) to construct a series of models for the internal
structure of Io and calculate the dynamical parameters, which are then compared with those
of the Moon.

Table 1 Basic Parameters of Io

Parameter Unit Value Reference

R km 1821.3 Davies et al. (1996)

GM km3s−2 5959.91 Anderson et al.(1996)

ω rad s−1 4.1109× 10−5 Anderson et al.(1996)

C22 10−6 559 Anderson et al.(1996)
I

MR2 0.371∼0.385 Anderson et al.(1996)

ρ g cm−3 3.5294 Anderson et al.(1996)

In Table 1, R is the average radius, GM the product of the gravitational constant G and the
mass M , ω the angular velocity, C22 the second sectorial Stokes coefficient, ρ the mean density,
and I

MR2 the dimensionless mean moment-of-inertia.

2 BASIC EQUATIONS AND RESULTS

2.1 The External Gravitational Field of Synchronously Orbiting Satellites

Io, like the Moon, orbits synchronously, i.e. its orbiting period is equal to its rotational
period. It then follows that its angular velocity ω is equal to the mean motion n. Based on the
theory of synchronous satellites (Burša 1989), Io’s external potential V can be expressed as a
sum of three terms,

W = V + Q + Vt , (1)

where V stands for the gravitational potential,
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and Vt, the tidal potential,
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where Re and a denote the mean equatorial radius of Jupiter and mean orbital semi-major axis
of Io, MJ the mass of Jupiter, Cnm and Snm the Stokes parameters, Pnm(sinϕ) the associated
Legendre function, respectively, q a small parameter and defined as
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Assuming that the initial figure of Io is ideally spherical (at ω = 0), the perturbing potential
∆W due to the rotational and tidal deformation can be expressed as

∆W = ks∆Q + ktVt, (6)

where ks is the secular Love number introduced by Munk and MacDonald (1960) as a measure
of the body-yield-to-centrifugal deformation in the course of development during the whole
evolution history of the satellite, kt is the analogous parameter to ks, the “secular tidal Love
number”, for describing the secular tidal deformation, and ∆Q is the perturbing part of the
potential Q of the centrifugal force,

∆Q = Q− 1
3
ω2r2 = −1

3
GM

r

(
Re

r

)−3

qP20(sinϕ). (7)

On the other hand, the perturbing potential ∆W can be expressed in a different form, as
follows,

∆W =
GM

r
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)2
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where ∆J2 and ∆C22 are the rotational and tidal deformation of the zonal C20 and the sectorial
C22 Stokes parameters, respectively. If the initial figure is the ideal sphere (at ω = 0), then

∆J2 = J2 =
C − 1

2 (A + B)
MR2

e

,

∆C22 = C22 =
B −A

4MR2
e

,
(9)

where C > B > A are the three principal moments of inertia of Io.
At the boundary, (6) and (8) should be identical. By solving the first (Dirichlet’s) boundary-

value problem for a sphere (radius R), with r = R = Re, the parameters J2 and C22 can be
expressed as functions of ks and kt,

J2 =
1
3
q(ks +

3
2
kt),

C22 =
1
4
qkt .

(10)

Assuming that the body-yield-to-centrifugal deformation is equal to the body-yield-to-tidal
deformation, kt = ks, Eq. (10) then yields

ks = kt =
4C22

q
, (11)

and

J2 =
10
3

C22 . (12)

It can be deduced that J2 is dependent on C22 for synchronously orbiting satellites. Eq. (12)
was treated as a constraint by Anderson et al. (1996). They analyzed the external gravitational
field of Io obtained by the Galileo spacecraft. Given C22 and q, Io’s dimensionless axial moment
of inertia C

MR2
e

follows from the expression (cf. Burša 1994),
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2.2 Internal Structure Models of Io

Schubert et al. (1981) first proposed the asthenosphere model, which consists of four regions:
a core, a mantle, an asthenosphere and an outer shell. The mean thickness of the lithosphere,
i.e. the outer shell, is about 35 km, and the density is about 2.7 g cm−3, while the thickness of
the asthenosphere is at least around 50 km, but no more than a few hundred kilometers, and
its density is about 2.9 g cm−3.

It is proposed that about two-thirds of tidal heating takes place in the asthenosphere. The
density of the mantle is about 3.3 g cm−3. As for the core, two models are considered in this
paper, i.e. Fe-FeS core (5.15 g cm−3) and Fe core (8.00 g cm−3). (c.f. Anderson et al. 1996).
By solving the Emden equation, the density distribution within the core and mantle can be
deduced and hence the size of the core and I

MR2
e
. Our procedure to construct Io’s internal

structure model is as follows.
Assuming that Io satisfies the condition of hydrostatic equilibrium within the mantle and

core,

dp

dr
= −4πGρ(r)

r
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the Emden equation can be derived (cf. Zhang & Zhang 1995),
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where K0 and b are known positive constants with different values for the mantle and core (cf.
Zhang 2000), and ρu denotes the value of the density at p = 0.

Taking sets of input parameters that satisfy the observed constraints in ρ̄ and I
MR2 , we

solve Eq. (15) for the density distribution ρ(r) for both the mantle and core. A unique solution
is unavailable due to insufficient constraints. Eight typical solutions are picked out and shown
in Table 2. The first five (Io-1∼5) refer to an Fe-FeS core, while the last three (Io-6∼8) refer
to a pure Fe core.

In Table 2, ρc denotes the central density, p(0) the central pressure, rc/R the ratio of the
core’s radius to the average radius, Mc/M the ratio of the core’s mass to the total mass, ds2

the asthenospheric thickness (the adopted value of the lithospheric thickness is 35 km), ρ1 the
density of the lithosphere, ρ2 the density of the asthenosphere, and ρm the average density
of the mantle. In our calculations, ρc and ds2 are regarded as fixed, and p(0), ρ1 and ρ2 are
regarded as adjustable parameters. The calculated values of I

MR2 are in the range between
0.371 and 0.385.

Table 2 Eight Models of Io

Model ρc p(0) rc/R Mc/M ρm ds2 ρ2 ρ1
I

MR2

g cm−3 kbar g cm−3 km g cm−3 g cm−3

Io-1 5.15 75.2 0.51 0.1922 3.5075 165 2.900 2.684 0.3707

Io-2 5.15 75.2 0.51 0.1922 3.4563 125 2.900 2.676 0.3721

Io-3 5.15 75.0 0.50 0.1812 3.4284 85 2.900 2.685 0.3743

Io-4 5.15 73.0 0.46 0.1412 3.4513 85 3.100 2.750 0.3791

Io-5 5.15 67.0 0.37 0.0736 3.5478 85 3.155 2.700 0.3846

Io-6 8.00 78.0 0.29 0.0550 3.5400 85 2.980 2.724 0.3799

Io-7 8.00 85.3 0.33 0.0809 3.4979 85 2.900 2.590 0.3744

Io-8 8.00 93.5 0.37 0.1138 3.4155 85 2.830 2.710 0.3691
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From Table 2 it can be seen that:
(1) For the first three models (Io-1∼3), whose values of the density of the core are the same,

rc/R and p(0) vary weakly with ds2; however, I
MR2 increases and ρm decreases with decreasing

ds2.
(2) For fixed ρc and ds2, rc/R increases and I

MR2 and ρm decreases as p(0) increases.
(3) For the model with a Fe-FeS core, the dimensionless moment of inertia I

MR2 can reach
0.3846, while for the model with a pure Fe core, I

MR2 is no greater than 0.3799.

2.3 Dynamical Parameters of Io

Under the condition of hydrostatic equilibrium, for any given density distribution ρ(r), it
is easy to obtain the hydrostatic flattening e(r) of the internal equipotential surface by solving
the Clairaut equation (cf. Zhang 1997). The flattening es ≡ e(R) is the flattening of the surface
of the rotational ellipsoid.

If not distorted by the secular tidal deformation, the second zonal Stokes parameter J
(0)
2

under rotational hydrostatic equilibrium can be expressed as (Burša 1984)

J
(0)
2 =

2
3
es −

1
3
q . (16)

In fact, Io is deformed by tides, therefore J2 is not identical to J
(0)
2 . The difference between

J2 and J
(0)
2

δJ2 = J2 − J
(0)
2 (17)

reflects the secular effect of the tides. Values of J
(0)
2 and δJ2 are given in Table 3 for the four

chosen models.
Since Io is assumed to be in tidal and rotational equilibrium, it is a triaxial ellipsoid whose

liberation parameters (α, β and γ) and dynamical flattening H are

α = C−B
A ,

β = C−A
B ,

γ = B−A
C ,

H = C−A+B
2

C .


(18)

These parameters, calculated from the models, are displayed in Table 3, where the corre-
sponding values for the Moon are also listed (cf. Zhang 1984).

Table 3 Dynamical Parameters of Four Io Models and Moon

Io-1 Io-3 Io-5 Io-6 Moon
I

MR2 0.3707 0.3743 0.3846 0.3799 0.3904

es(10−3) 1.918 1.943 2.021 1.986 0.0221

J
(0)
2 (10−3) 0.7079 0.7246 0.7766 0.7532 0.008644

δJ2(10−3) 1.1551 1.1384 1.0864 1.1098 0.19354?

α(10−3) 2.026 2.006 1.952 1.977 0.4037

β(10−3) 8.057 7.980 7.766 7.862 0.6317

γ(10−3) 6.081 5.974 5.814 5.886 0.2280

H(10−3) 5.025 4.977 4.844 4.904 0.5167

? δJ2 is the nonhydrostatic value of the Moon. J2 of the Moon is 2.02151× 10−4;

and C22 of the Moon is 2.2302× 10−5.



280 H. Zhang & C. Z. Zhang

3 COMPARISON OF Io WITH THE MOON

The density and size of Io are approximately equal to those of the Moon, and both satellites
orbit synchronously. However, they are quite different in several aspects, as is shown in Table
3. From a comparison of Io with the Moon, it is deduced that:

(1) J2 of Io (10−3) is larger than that of the Moon (10−4) by one order of magnitude. Io is
in hydrostatic equilibrium (J2 = 10

3 C22), but the Moon deviates from hydrostatic equilibrium
(J2 6= 10

3 C22).
(2) For the Moon, the nonhydrostatic component is about two orders of magnitude higher

than the hydrostatic component (cf. Zhang 1994). However, for Io, J
(0)
2 is of the same order of

magnitude as δJ2.
(3) The liberation parameters and dynamical flattening of Io exceed those of the Moon by

one order of magnitude. Among Io’s three liberation parameters, α is the smallest (α < γ < β),
while for the Moon, γ is the smallest (γ < α < β).

(4) The dimensionless moment of inertia of Io is less than that of the Moon. Our study
suggests that the relative radius of Io’s core lies between 0.29 and 0.51. Thus, It may possess
a large core, which is favorable for it to have a magnetic field.

4 CONCLUSIVE REMARKS

In this paper, several models of Io are constructed, similar to those of Anderson et al.
(1996). Our results indicate that δJ2 of Io is of the same order of magnitude as J2 itself, which
suggests that Io is strongly affected by tides and may have a large core, with a relative radius
of 0.51. Although the mass and size of Io are similar to those of the Moon, they are still quite
different in many aspects.
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