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Abstract Satellite-to-Satellite Tracking (SST) data can be used to determine the
orbits of spacecraft in two ways. One is combined orbit determination, which com-
bines SST data with ground-based tracking data and exploits the enhanced tracking
geometry. The other is the autonomous orbit determination, which uses only SST.
The latter only fits some particular circumstances since it suffers the rank defect
problem in other circumstances. The proof of this statement is presented. The na-
ture of the problem is also investigated in order to find an effective solution. Several
methods of solution are discussed. The feasibility of the methods is demonstrated
by their application to a simulation.
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1 INTRODUCTION

The tracking arc-length should be increased in order to improve the accuracy in orbit
determination of LEO (Low Earth Orbit) satellites. The local ground-based tracking network
does not provide sufficient orbit coverage for the user satellites. The most promising method
is to use high orbiting satellites, such as GPS and TDRS, as trackers to observe the user
satellites. For example, two geosynchronous satellites could cover more than 85% of the orbit
of any given user satellite. These high orbiting satellites form the space-based network which
can partially replace the ground-based network. Similar to GPS satellites, the precise TRDS
orbits are routinely derived from the observations by the ground stations. They can also
be improved simultaneously with the user satellite trajectories. This method treats the high
orbiting satellites as ‘roving ground stations’ whose station coordinates are to be estimated.
It combines the SST data with the ground-based tracking data and takes advantages of the
extended geometry.

Besides the global navigation satellite system and the high geosynchronous satellite con-
stellation, there is a local navigation satellite system (Wang 1999). With increasing application
of satellites, LEO satellite constellations are flourishing. Since the number of satellites in one
constellation is rather large, it is not desirable to observe all the satellites of a constellation by
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the ground-based network. An alternative method is to let the ground stations observe only
one or a small number of satellites in the given constellation, and to measure the others based
on these. Instead of the high orbiting satellites, the satellites with the ground stations tracking
are treated as trackers. The theory of this method is similar to the case mentioned above where
the user satellites are observed by the space-based network.

In all the preceding tracking methods, the orbit of the user spacecraft suffers from the
inaccuracies of the tracking satellite trajectories just as the uncertainties of the ground sta-
tion coordinates. It could be improved by estimating the tracker orbits and the user orbits
simultaneously, namely by the combined orbit determination of the two kinds of satellites. The
ground-based tracking data must be included; otherwise the procedure of orbit determination
would be failing. Particularly, the autonomous orbit determination has to be used since no
support of the ground stations could be provided under certain circumstances. However, it
cannot be realized in principle since it leads to a rank defect problem of the normal matrix in
the LS (least square) estimate procedure. In regard of orbit geometry, it results in an uncer-
tainty of the orbit called orbit overall drift. In the following sections, a theoretical analysis of
two methods using the SST data is given first. The cause of the rank defect problem occurring
in the autonomous orbit determination case is sought in order to find an effective solution.
Next, several methods of solution are discussed and their feasibility is demonstrated by their
application to simulation.

2 THEORETICAL ANALYSIS

For convenience in the analysis, we consider a system which includes one ground station,

Fig. 1 Geometry of two satellites and the

ground station

one user spacecraft (user) and one tracking
satellite (tracker). All the measurements
between them are range data. In the Earth
Inertial Coordinates (c.f. Fig. 1), ρs is the
range between the tracker S1 and the user
S. ρe is the range between the tracker and
the ground station A. They satisfy the fol-
lowing two equations.

ρs = ρs(r, re) = |r − re| , (1)

ρe = ρe (re,R) = |re −R| , (2)

where R is the geocentric location of the
ground station, called the vector of the sta-
tion coordinates.

The tracker ephemeris is routinely derived from the ground tracking and the user orbit is
subsequently determined from the SST data. The tracker is treated just as a roving ground
station. Its position, re in Equation (1), is a known function of t and can be computed from
the tracking by the ground-based network based on Equation (2). This conventional method
combines the tracking of the space-based network with the tracking of the ground-based network
to improve the user orbit. There is no essential difference from the conventional method using
only the ground-based network for orbit determination. It is limited by the inaccuracy of the
tracker ephemeris due to the weakness in the ground-based tracking geometry. This limitation
could be ameliorated by another method which estimates the tracker ephemeris and the user
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orbit simultaneously. This method also combines measurement of the space-based network
with the ground-based network tracking and computes the orbits based on Equation (1) and
Equation (2). While it could improve the accuracy, it is not essentially different from the above
method where the tracker orbit is not estimated simultaneously. Both methods depend on
ground-based tracking. If only Equation (1) is used, i.e., without any tracking data from the
ground-based network, then there will be an essential difference.

To specify the problem concisely, only the orbit state vector is improved. Other relevant
dynamical parameters and the body geometrical parameters are not estimated. Choose the
state vector as

X =
(

σ
σ1

)
. (3)

Where σ and σ1 are the orbit elements of the user and the tracker respectively. They are defined
as

σ =


a
e
i
Ω
ω
M

 , σ1 =


a1

e1

i1
Ω1

ω1

M1

 , (4)

where a, e, i, Ω, ω and M are the Kepler orbit elements. The estimated state vector X at time
t0 is denoted by X0 (σ0, σ10). We propose to use the orbit elements as the state vector rather
than the position r and the velocity ṙ. This way will bring out more clearly the nature of rank
defect in autonomous orbit determination from SST data. It also contributes to finding the
solution to the rank defect problem. It also has certain advantages in the calculation of the
orbit determination (Liu & Zhang 1999).

Since the measurements are range data, the observational vector can be written as

Y =
(

ρs

ρe

)
. (5)

The different sampling times, the SST and the ground-based tracking data, are denoted by t

and te, respectively. The general forms of the state equations and observation-state relationship
are linearized about a reference solution. The linear equation (condition equation) of the orbit
determination has the form

y = Bx + V , (6)

where V is the random observational noise, y is the observation residual and x is the correction
vector to the estimated state X0. They can be expressed as

y = Yo − Yc =
(

(ρs)o − (ρs)c

(ρe)o − (ρe)c

)
, (7)

x = X0 −X∗
0 , (8)

where (ρs)o, (ρe)o and (ρs)c, (ρe)c are the values of observation and theoretical calculation
corresponding to the reference orbit X∗

0 respectively. Whether the problem is rank defective or
not depends on the property of matrix B,

B =
(

Bs

Be

)
=


(

∂ρs

∂(r,re)

) (
∂(r,re)

∂X

) (
∂X
∂X0

)(
∂ρe

∂(re,R)

) (
∂(re,R)

∂X

) (
∂X
∂X0

)
 . (9)
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For each observation, the three partial derivative matrices in the right-hand side of Equation
(9) represent one a (2× 6) vector, one a (6× 12) vector and one a (12× 12) vector respectively.
So matrix B is a (2 × 12) vector. If the total number of samplings is k = (k1 + k2), matrix B

is a (k× 12) vector. Only if one sampling of each tracking type is considered, can we know the
property of matrix B and the nature of the rank defect problem. Omitting the derivation, the
final form of matrix B can be written as

B =

(
1

(ρs)1
b1,j

1
(ρe)1

b2,j

)
, (j = 1, 2, · · · , 12) , (10)

where the main terms of each components can be expressed as

b1,1 = (r − re)(r
a ) + (r − re)( ṙ

n )(− 3n
2a ∆t) ,

b1,2 = (r − re)(Hr + Kṙ) ,

b1,3 = (r − re)( z
sin iR̂) ,

b1,4 = (r − re)Ω ,

b1,5 = (r − re)(R̂× r) ,

b1,6 = (r − re)( ṙ
n ) .

(11)



b1,7 = −(r − re)(
re
n1

)− (r − re)( ṙe

n1
)(− 3n

2a ∆t) ,

b1,8 = −(r − re)(H1re + K1ṙ) ,

b1,9 = −(r − re)( ze

sin i1
R̂1) ,

b1,10 = −(r − re)Ω1 ,

b1,11 = −(r − re)(R̂1 × re) ,

b1,12 = −(r − re)( ṙe

n1
) .

(12)



b2,1 = −(re −R)(re
n1

)− (r −R)( ṙe

n1
)(− 3n

2a ∆t) ,

b2,2 = −(r −R)(H1re + K1ṙ) ,

b2,3 = −(r −R)( ze

sin i1
R̂1) ,

b2,4 = −(r −R)Ω1 ,

b2,5 = −(r −R)(R̂1 × r) ,

b2,6 = −(r −R)( ṙe

n1
) .

(13)

b2,7 = b2,8 = · · · = b2,12 = 0 . (14)

On Equations (11)–(14), the quantities are defined as

∆t = t− t0 , ∆te = te − t0 , (15)

{
H = −a

p (cos E + e) ,K = sin E
n

(
1 + r

p

)
,

p = a
(
1− e2

)
, n =

√
µa−

3
2 , µ = GMe ,

(16)

Ω =

−y
x
0

 , R̂ =

 sin i sinΩ
− sin i cos Ω

cos i

 , (17)

where E is the eccentric anomaly, GMe is the gravity constant of the earth. All the quantities
with the subscript ‘1’ correspond to the tracker, expressions that are similar to those of the
user are not listed again.
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The property of matrix B can be seen from one pair of (b1,4, b1,10) and (b2,4, b2,10). Using
the expression of Ω (and Ω1) on Equation (15) , they can be written as{

b1,4 = xey − yex, b1,10 = − (xey − yex) = −b1,4 ,
b2,4 = Xye − Y xe, b2,10 = 0 6= −b2,4 .

(18)

Hence the absolute values of two ranks in matrix B are equal if there is no ground-based
tracking data. Therefore, the matrix is not full rank since the determinant of the normal matrix
BT B in Equation (6) will satisfies

∣∣BT B
∣∣ = 0. As a result the orbits cannot be determined.

This method is the autonomous orbit determination using only SST data. But if ground-based
tracking of the tracker is available, then matrix B will not be rank defective, and we have the
combined orbit determination using both SST data and ground-based tracking data. Here the
orbit of the tracker is estimated together with that of the user. Note that under a certain
circumstance there are similar problems on b1,3 and b1,9 which are related to the inclination i.
Another form of expressions of b1,3 and b1,9 is{

b1,3 = (xze − zxe) sinΩ− (yze − zye) cos Ω ,
b1,9 = − (xze − zxe) sinΩ1 + (yze − zye) cos Ω1 .

(19)

When Ω = Ω1 or Ω = Ω1 + 180◦, we have

b1,9 = −b1,3, or b1,9 = b1,3 , (20)

whereas b2,3 and b2,9 have no such a problem.

3 SOLUTION

From the behavior of matrix B regarding rank defect, we learn that the cause of the problem
in the autonomous orbit determination using SST data is the uncertainty of the orbit plane, or
what is called the overall drift of orbit. To use the position vector and the velocity vector as
the state vector will make it difficult to show the cause and will not help to find an effective
solution to the problem.

Using biased estimators could solve the conventional unobservable determination problems
to a certain extent (Cicci 1988). But it does not work well in the rank defect problem occurring
in the autonomous orbit determination. Since the problem concerns the orbit plane, it can be
solved through giving a priori information of (i,Ω) that are obtained by some other methods.
Moreover, (i, Ω) are the two elements that tend to be predicted more accurately than the other
orbit elements. They suffer less from the atmosphere model error than other elements since the
effects of the atmosphere on them are mainly due to its rotation.

4 SIMULATION AND RESULT

The procedure of orbit determination for the user spacecraft was simulated in two cases. One
was to use a high altitude satellite as the tracker. The other was to use another satellite in the
same constellation as the tracker. Both cases showed autonomous orbit determination without
ground-based tracking data to be infeasible. There is no substantial improvement even if we use
biased estimator (the ridge-type estimator) discussed in paper (Cicci 1988). The method with a
priori information of (i,Ω) of the tracker orbit does work effectively. Considering the predicting
accuracy that can generally be obtained, the errors of (i,Ω) were given as ∆(i, Ω) = 10−5.
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Here we give the result of the latter case with two LEO satellites. The orbit elements of their
benchmark trajectories are given in Table 1. Instead of semimajor axis a, the period T is used
as an orbit element.

Table 1 Benchmark Trajectories of Two LEO Satellites

Period Eccentricity Inclination Longitude of Longitude of Mean

(min) (degree) the ascending node perihelion anomaly

(degree) (degree) (degree)

Tracker 100.0 0.001 50.0 50.0 50.0 0.0

User 100.0 0.001 50.0 110.0 50.0 0.0

Both SST data and the ground-based tracking data are included in the range measurements.
The random error of range measurement is 10m. Ten passes are simulated, including 585 points
of SST data and 67 points of ground-based tracking data. Three types of LS estimators are
applied. The improved trajectories of various methods are compared with the benchmark orbits.
The orbit differences are indicated in Table 2.

Table 2 Orbit Differences

Data SST Data and SST data

the Ground-based Tracking Data

LS Estimator Conventional Fixed i and Ω of Given a priori i and Ω of

Type the Tracker the Tracker

RMS 0.1115 ×10−5 0.1113 ×10−5 0.1780×10−5

∆a1 –0.1444×10−9 –0.9114×10−8 –0.5272×10−7

∆e1 –0.5834 ×10−7 –0.1088×10−5 0.7133×10−6

∆i1 –0.3173×10−6 0.1000 ×10−4 0.2148 ×10−4

∆Ω1 0.3427 ×10−6 0.1000 ×10−4 0.1939×10−4

∆(ω + M)1 –0.4346 ×10−7 –0.1884 ×10−4 0.2546 ×10−4

∆a 0.5875 ×10−9 –0.6817 ×10−7 0.1590 ×10−7

∆e –0.1420 ×10−6 –0.2298 ×10−6 0.1787 ×10−5

∆i –0.2138 ×10−6 0.1737 ×10−4 –0.5172 ×10−5

∆Ω 0.4571 ×10−6 –0.3513 ×10−5 0.1551 ×10−4

∆(ω + M) –0.2318 ×10−6 0.2011 ×10−5 0.3383 ×10−4

In Table 2, RMS and ∆a1, ∆a are in units of the earth’s equatorial radius ae. The angular
residuals are in radians.

From the results presented in Table 2, we are inclined to conclude that the method combin-
ing SST data with the ground-based tracking data is the most effective method. Another two
methods, least square estimators at fixed or given a priori values of i and Ω of the tracker, also
lead to sound results. Since it is not difficult to predict accurate ‘a priori values’ of (i,Ω), as
already mentioned, the methods are also feasible. The autonomous orbit determination without
any information of (i,Ω) could not be realized since the procedure of orbit determination either
did not converge or led to bad results.
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