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Abstract Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper ana-
lyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient
magnetic field. It is found that the geometrical features of the magnetic flux rope,
including the height of the rope axis, the half-width of the rope, and the length of
the vertical current sheet below the rope, are determined by a single magnetic pa-
rameter, the magnetic helicity, which is the sum of the self-helicity of the rope and
the mutual helicity between the rope field and the ambient magnetic field. All the
geometrical parameters increase monotonically with increasing magnetic helicity.
The implication of this result in solar active phenomena is briefly discussed.
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1 INTRODUCTION

Observations show that the magnetic helicity of solar magnetic structures has a predominant
sign in each hemisphere of the Sun, positive in the southern hemisphere and negative in the
northern, regardless of the solar cycle (Rust, 1994). The magnetic helicity is strictly conserved
in the frame of ideal MHD (Woltjer, 1958), and approximately conserved in the presence of
resistive dissipation and magnetic reconnection in a highly conductive plasma (Taylor, 1974;
Berger, 1984; Hu et al., 1997). Therefore, during the ceaseless evolution of active regions the
magnetic helicity will be continuously accumulated in the corona, and then escapes from the
corona by prominence eruptions or coronal mass ejections into interplanetary space in the form
of magnetic clouds (Low, 1993). The magnetic flux rope is a typical magnetic structure in
the corona, and coexists generally with a prominence of reverse magnetic topology, serving as a
habitat of magnetic helicity (Low & Hundhausen, 1995). An extensive study was carried out on
the equilibrium properties and catastrophic behavior of coronal magnetic flux ropes (Van Tend
& Kuperus, 1978; Forbes & Isenberg, 1991; Isenberg et al., 1993; Lin et al., 1998), and useful
explorations proceeded with the possibility for the ropes to induce solar flares (Forbes, 1991;
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Forbes & Priest, 1995) and coronal mass ejections (Forbes, 1990; Forbes & Isenberg, 1991; Guo
et al., 1996; Wu & Guo, 1999). Previous investigations of magnetic flux ropes were limited to
line current (Van Tend & Kuperus, 1978) or thin-rope (Forbes & Isenberg, 1991; Isenberg et al.,
1993; Lin et al., 1998) approximations, using either the axial current intensity or the magnetic
energy to characterize the physical properties of the ropes. However, a realistic magnetic flux
rope has a transverse width close to the height of its axis, while the axial current intensity and
the magnetic energy of the rope are not conserved during the evolution of the rope. Recently,
Hu & Liu (2000, referred to as Paper I hereinafter) presented a numerical study of large-radius
coronal magnetic flux ropes, in which conserved quantities, such as the axial and annular
magnetic fluxes and the magnetic helicity, were adopted to describe the physical properties of
the ropes, and relationships were established between the geometrical parameters, including
the height of the rope axis, the half-width of the rope, and the length of the vertical current
sheet below the rope, and the conserved magnetic parameters mentioned above. Their results
showed that the geometrical parameters increase monotonically and smoothly with increasing
magnetic parameters, and no catastrophe occurs. In Paper I, the ambient magnetic field is a
bipolar closed field, the magnetic flux rope emerges from the photosphere, and all the conserved
quantities of the rope are controlled by a single emergence parameter, so that they cannot
be adjusted independently. Consequently, that paper failed to answer the question which of
the three conserved quantities determines the equilibrium properties of the rope, and failed to
establish a definite relation between the geometrical parameters and the magnetic helicity. This
paper starts with a coronal flux rope in equilibrium embedded in the bipolar ambient magnetic
field; at time t = 0, the axial and annular magnetic fluxes of the rope are abruptly changed,
and then the system is let to evolve to a new equilibrium. The relation between the geometrical
parameters and the magnetic helicity for the equilibrium is then established on this basis.

2 MAGNETIC HELICITY OF CORONAL MAGNETIC ROPES

Take a Cartesian coordinate system such that the photosphere coincides with the x-z plane
and the y-axis is vertical and upward. For a two-dimensional problem independent of z, one
may introduce a magnetic flux function ψ(t, x, y) related to the magnetic field by

B = ∇× (ψẑ) +Bzẑ . (1)

Following Hu et al. (1997), the two-dimensional magnetic helicity in a volume V reads

HT =
∫
V

ψBz dV . (2)

This magnetic helicity is related to the conventional magnetic helicity

H =
∫
V

A ·B dV , (3)

(A is the vector potential) by

H = 2HT +
∮
σ

(Az ×Ap) · dS , (4)

where σ is the boundary of V , Az and Ap satisfy

A = Az + Ap , ∇×Ap = Bzẑ , Az = ψẑ . (5)
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Let us now determine the magnetic helicity of the coronal rope in terms of Equation (4). For
a segment of the rope of unit length along the z-direction, σ consists of the side face, the bottom,
and the top. The problem being two-dimensional, only the side face makes a contribution to
the surface integral on the right hand side of Equation (4). Moreover, ψ = const along the side
face, set to be Φc, which represents the annular magnetic flux of the ambient magnetic field
outside of the rope per unit length along the z-direction, if ψ is set to be zero at infinity. In
this situation,∮

σ

(Az ×Ap) · dS =
∮
σ

Φc(ẑ ×Ap) · dS = −
∫
V

Φcẑ · ∇ ×ApdV = −ΦcΦz , (6)

where
Φz =

∫
ψ≥Φc

Bzdxdy (7)

is the axial magnetic flux of the rope. The annular magnetic flux of the rope over a unit length
along the z-direction is the difference between the magnetic flux function at the rope axis and
Φc, denoted as Φp. Inserting Equation (6) into (4) leads to the following expression for the
magnetic helicity of the rope of unit length:

H = 2HT − ΦcΦz , (8)

where
HT =

∫
ψ≥Φc

ψBzdxdy . (9)

Define
HT0 =

∫
ψ≥Φc

(ψ − Φc)Bzdxdy = HT − ΦcΦz , (10)

which is entirely determined by the magnetic structure inside the rope and has nothing to do
with the ambient magnetic field. As a matter of fact, HT0 stands for one half of the self-helicity
of the rope. An increase of ψ and Bz inside the rope results in a corresponding increase in
the annular and axial magnetic fluxes respectively, accompanied by an increase of the magnetic
helicity of the rope. From Equation (10), we may rewrite Equation (8) as follows:

H = 2HT0 + ΦcΦz . (11)

The first term on the right hand side of Equation (11) is the self-helicity of the rope, and the
second stands for the mutual helicity between the rope and the ambient magnetic field. This
equation shows that the magnetic helicity depends not only on the axial and annular magnetic
fluxes of the rope, but also on the annular magnetic flux of the ambient magnetic field. Note
that Φc, Φz, HT and HT0 are all conserved quantities (see Paper I), so HT is also conserved.
Considering that the computational domain is always finite, part of the annular magnetic flux of
the ambient magnetic field must be missing from the domain. As a result, the effective mutual
helicity is reduced, and so is H. Therefore, we replace Equation (11) by

Hα = 2HT0 + αΦcΦz , (12)

where Hα is called modified magnetic helicity, and α is a constant between 0 and 1. For α = 1,
Equation (11) is recovered, and the corresponding magnetic helicity will be denoted by H1

hereinafter.
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3 GEOMETRICAL PARAMETERS VERSUS MAGNETIC HELICITY FOR THE
ROPE

We use a time-dependent, 2.5-D ideal MHD model to obtain new equilibrium solutions
associated with the rope. The basic equations are cast in the non-dimensional form:

∂ρ

∂t
+ vx

∂ρ

∂x
+ vy

∂ρ

∂y
+ ρ

∂vx
∂x

+ ρ
∂vy
∂y

= 0 , (13)
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The notations are conventional and the same as in Paper I. The computational domain is taken
to be 0 ≤ x ≤ 5, 0 ≤ y ≤ 12, and discretized into a 50×60 uniform mesh (52× 62 grid points).
The relevant boundary conditions are the same as those taken in Paper I. We point out in
passing that the boundary conditions on the right hand side (x = 5) and the top (y = 12) are
very crucial in finding the equilibrium solutions of ropes with a vertical current sheet of finite
length. The inability of a previous paper by Hu & Liu (1999) to produce these solutions is
entirely due to the inappropriate boundary conditions at these two boundaries (cf. Hu & Liu,
1999; Hu et al., 2000). The initial state is a solution of Paper I with the emergence parameter
CE = 8.6, characterized by a magnetic flux rope attached to the photosphere and surrounded
by a bipolar ambient magnetic field. Figure 1a shows the magnetic configuration for the initial
state. The height of the rope axis is ha = 1.82, the half-width of the rope is w = 1.34, and
the length of the vertical current sheet is hs = 0. The conserved quantities of the rope are
Φz = 21.1, HT0 = 44.7, and Φp = 3.02 whereas the total annular magnetic flux of the ambient
magnetic field is Φc = 3π = 9.42. Starting from this initial state, we change the magnetic flux
function ψ0(x, y) and the axial magnetic field Bz0(x, y) inside the rope (ψ ≤ Φc) to

ψ(x, y) = Φc + αψ[ψ0(x, y)− Φc ] , Bz(x, y) = αzBz0(x, y) , (20)

where αψ and αz are positive constants, and then let the system evolve into a new equilibrium.
After such a change, the axial and annular magnetic fluxes, Φz and Φp, increase by a factor
of αψ and αz respectively, and the half-self-helicity of the rope, HT0, becomes αψαz times the
initial value accordingly. Figure 1 shows the magnetic configurations at a set of times for the
case of αψ = 1.5 and αz = 1. Owing to the increase of the annular magnetic flux, the magnetic
rope expands and ascends, becoming separated from the photosphere and leaving a vertical
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current sheet below. After a period of nearly 60 τA (τA is the Alfvén transit time, see Paper I),
the magnetic rope reaches equilibrium. For each set of (αψ, αz) values, an equilibrium state is
obtained thorough numerical simulation, along with the geometrical and magnetic parameters
of the associated magnetic flux rope. On this basis, a quantitative analysis is made on the
relation between the two sets of parameters, especially between the geometrical parameters
and the magnetic helicity. Figure 2a shows the geometrical parameters as a function of αψ for
αz = 1, the case where the axial magnetic flux of the rope is kept constant. All the geometrical
parameters increase monotonically with increase of αψ or the annular magnetic flux of the rope.

Fig. 1 Magnetic configurations at several separate times for αψ = 1.5 and αz = 1

Fig. 2 Geometrical parameters of the magnetic rope versus (a) αψ for αz = 1 and (b) αz for αψ = 1

Figure 2b shows the geometrical parameters as a function of αz for αψ = 1, the case where
the annular magnetic flux of the rope is kept constant. The profiles are similar to those in
Figure 2a except that the growth amplitude of the geometrical parameters is larger in Figure
2b for the same enhancement factor of magnetic flux, implying that the axial magnetic flux
exerts a larger influence on the geometrical parameters of the rope than the annular magnetic
flux does. The three panels in Figure 3 represent the geometrical parameters of the rope as
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functions of the half-self-helicity HT0 (Fig. 3a), of the total magnetic helicity H1 (Fig. 3b)
and of the modified magnetic helicity Hα (α = 0.7) (Fig. 3c). There are two curves for each
geometrical parameter: the filled circles denote samples for a fixed axial magnetic flux and
a variable annular magnetic flux, and the open circles, samples for a fixed annular magnetic
flux and a variable axial magnetic flux. The pairs of curves are not coincident in Figs. 3a
and 3b, implying that the relation of these parameters to both HT0 and H1 are not single
valued. In other words, the geometrical parameters of the rope cannot be uniquely determined
by the magnetic parameter HT0 or H1. Comparing Figs. 3a and 3b, it can be seen that the
deviation between the two curves of each pair is smaller in Fig. 3b than in Fig. 3a, and this
indicates that it is reasonable to include the mutual helicity in the total magnetic helicity of the
rope. By contrast, the two profiles of each geometrical parameter as function of the modified
magnetic helicity Hα with α = 0.7 essentially coincide with each other (Fig. 3c). Therefore, the
conclusion mentioned above that the axial magnetic flux has a larger effect on the geometrical
parameters is attributed to the fact that an increase of the axial magnetic flux will enhance
both the self-helicity and the mutual helicity, whereas an increase of the annular magnetic
flux has no bearing on the mutual helicity. Therefore, for the same enhancement factor, an
increase of the axial magnetic flux leads to a larger growth of Hα (α > 0), and hence a larger
increment of the geometrical parameters of the rope. Incidentally, to our knowledge we are
the first to simultaneously investigate the roles taken by the axial and annular magnetic fluxes
in the behavior of the coronal magnetic flux rope and to make a comparison between them.
Previous authors also studied the effect of either the axial magnetic flux (Guo & Wu, 1998) or
the annular magnetic flux (Wu et el., 1995; Chen, 1996) on the behavior of the rope, but did
not make any comparison between the two cases. Nevertheless, it is quite interesting that a
common conclusion was reached by these authors that an injection of either of the axial and
annular magnetic fluxes into the rope while keeping the other fixed may drive the eruption of
the rope, and this conclusion is essentially consistent with that reached in this study.

Fig. 3 Geometrical parameters of the magnetic rope versus (a) the half-selfe-helicity HT0, (b) the

total magnetic helicity H1, and (c) the modified magnetic helicity Hα with α = 0.7

The modification factor α in Equation (12) is chosen so as to achieve an approximate
coincidence between the two sets of profiles. As mentioned above, this is due to the finiteness
of the computational domain which reduces the effective mutual helicity. We repeated the
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calculations for a larger domain: 0 ≤ x ≤ 7, 0 ≤ y ≤ 24 (70×120 uniform meshes), and found
that α = 0.96. The results are shown in Figure 4. We argue that α should approach unity if
the domain is further expanded, and conclude that the geometrical parameters of the rope are
indeed determined by a single magnetic parameter, namely, the magnetic helicity of the rope,
which is the sum of the self-helicity of the rope and the mutual helicity between the rope and the
ambient field. We should point out in passing that the geometrical parameters are somewhat
smaller in Figure 4 than in Figure 3 for the same set of values of the magnetic parameters. This
indicates that the size of the computational domain has a subtle influence on the numerical
results associated with the rope. The larger the domain is, the more ambient magnetic flux
will be included in the domain. The ambient magnetic field plays a role of hindering the
expansion and rising of the embedded rope so that the geometrical parameters of the rope
become smaller for a larger computational domain. Nevertheless, the single-valued relation
between the geometrical parameters and the modified magnetic helicity is still maintained for
the larger computational domain, and what is more, the modified magnetic helicity Hα is closer
to the total magnetic helicity H1 as expected.

Fig. 4 Same as Fig. 3 but for a larger computational domain (0 ≤ x ≤ 7, 0 ≤ y ≤ 24) and α = 0.96

4 CONCLUDING REMARKS

Using a 2.5-D ideal MHD model, a numerical study is presented on the equilibrium prop-
erties of coronal magnetic flux ropes with emphasis on the dependence of the geometrical
parameters on the magnetic parameters. The geometrical parameters of the rope increase
monotonically with increasing axial and annular magnetic fluxes and magnetic helicity. The
magnetic helicity is the sum of the self-helicity of the rope and the mutual helicity between
the rope and the ambient magnetic field. It is shown that a single-valued relationship can be
achieved between the geometrical parameters and a modified magnetic helicity, obtained from
the total magnetic helicity by a suitable reduction of the share of mutual helicity. The extent
to which the share of the mutual helicity is reduced is controlled by a modification factor α
(see Equation (12)) that depends on the size of the computational domain. The value of α
approaches unity for a sufficiently large domain, as demonstrated by the numerical results.
Consequently, we argue that the geometrical parameters of the rope is uniquely determined by
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a single magnetic parameter, i.e. the magnetic helicity. This conclusion has certain implications
in solar active phenomena. Low (1993) argued that the ceaseless accumulation of magnetic he-
licity in the corona needs a mechanism by which the accumulated magnetic helicity is removed
from the corona, and prominence eruptions and coronal mass ejections are probable candidates.
Based on the conclusion that the geometrical conditions of a coronal magnetic flux rope are
determined by its magnetic helicity, it may be conjectured that the eruption of the rope will
be closely related to its magnetic helicity, too. If this conclusion is correct, one then finds a
more natural way to associate the magnetic helicity with relevant solar active phenomena. The
present simple model is limited to a specific ambient magnetic field, and the magnetic rope has
no catastrophic behavior. It would be undoubtedly interesting to extend the present analysis to
other ambient magnetic fields and to catastrophic cases; we relegate this task to future efforts.
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