A Low-mass-ratio and Deep Contact Binary as the Progenitor of the Merger V1309 Sco

Liying Zhu1,2,3, Ergang Zhao1,2,3 and Xiao Zhou1,2,3

1 Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, 650011 Kunming, P. R. China; zhuly@ynao.ac.cn
2 Key laboratory of the structure and evolution of celestial objects, Chinese Academy of Sciences, P.O. Box 110, 650011 Kunming, P. R. China
3 University of the Chinese Academy of Sciences, Yuquan Road 19#, Sijingshang Block, 100049 Beijing, P. R. China

Received 2015 September 4; accepted 2015 November 3

Abstract Nova Sco 2008 (=V1309 Sco) is one of the V838 Mon type eruptions rather than a typical classical nova. This enigmatic object was recently shown to have resulted from the merger of the two stars in a contact binary. It is the first stellar merger that was undergoing a common envelope transient. To understand the properties of its binary progenitor, the pre-outburst light curves were analyzed by using the W-D (Wilson and Devinney) method. The photometric solution of the 2002 light curve shows that it is a deep contact binary ($f = 89.5(\pm40.5)\%$) with a mass ratio of 0.094. The asymmetry of the light curve is explained by the presence of a dark spot on the more massive component. The extremely high fill-out factor suggests that the merging of the contact binary is driven by dynamical mass loss from the outer Lagrange point. However, the analysis of the 2004 light curve indicates that no solutions were obtained even at an extremely low mass ratio of $q=0.03$. This suggests that the common convective envelope of the binary system disappeared and the secondary component has spiraled in the envelope of the primary in 2004. Finally, the ejection of the envelope of the primary produced the outburst.

Key words: Stars: binaries: close — Stars: binaries: eclipsing — Stars: individuals (V1309 Sco) — stars: evolution — Stars: mass-loss

1 INTRODUCTION

Contact systems are short-period close binary stars where both components are filling their critical roche lobes and sharing a common envelope. They are formed from near-contact binaries via mass transfer and/or angular momentum loss (e.g., Qian 2002a, b; Zhu \& Qian 2006, 2009; Zhu et al. 2009, 2012). This kind binary stars are oscillating around a critical mass ratio (e.g., Qian 2001 a, b; 2003a, b) and will merge into a rapidly rotating single stars (e.g., Qian et al. 2005a; Zhu et al. 2005, 2011). Searching for the mergers of contact binaries is a key question in stellar astrophysics.

V1309 Sco was discovered as Nova Sco 2008 on JD 2454712 in September 2008 (Nakano 2008). However, the subsequent evolution showed that it belongs to a new type of outburst rather than a typical classical nova (e.g., Mason et al. 2010). Early spectroscopic data revealed an F-type giant, and then evolved to K- and M-types (Mason et al. 2010; Rudy et al. 2008a, b). As pointed out by Tylenda et al. (2011), it shares the principal characteristic of the V838 Mon type eruptions, i.e evolution to very
low effective temperatures after maximum brightness and during the decline (Tylenda & Soker 2006). Some common features of V1309 Sco and the V838 Mon type outbursts include the outburst amplitude of 7-10 magnitudes, the eruption time scale of the order of months, expansion velocities of a few hundreds km/s (instead of a few thousands as in classical novae), and complete lack of any high-ionization features.

By using archive photometric data collected in the OGLE project during about six years before the outburst, Tylenda et al. (2011) concluded that the progenitor of V1309 Sco was a contact binary with a period of about 1.4 days. The binary system quickly evolved towards its merger and produced the eruption observed in 2008. Nandez et al. (2014) pointed out that the progenitor consists of a 1.52\,M\odot giant and a 0.16\,M\odot companion with an orbital of ~ 1.4 days and evolves toward the merger primarily because of Darwin instability. The investigation of Pejcha (2014) indicated that the period decay timescale P/\dot{P} decreased from ~ 1000 to ~ 170 years in about six years revealing a variable rate of mass loss. McCollum et al. (2014) showed the merger remnant’s brightness in optical bandpasses, near-IR bandpasses, and the Spitzer 3.6\,μm and 4.5\,μm channels has varied by several magnitudes and in complex ways suggesting the occurrence of a dust formation event. The purpose of the present paper is to understand the origin of the outburst by analyzing the light curves of the progenitor of V1309 Sco. Our results indicate that the progenitor of V1309 Sco is a low mass ratio, deep contact binary that is nearly filling the outer critical Roche lobe and undergoing rapidly mass and angular momentum loss.

2 ANALYSIS OF THE LIGHT CURVES

V1309 Sco was included in one of the stellar fields by the OGLE team. Therefore, precise photometric data in I-band were obtained for six years before outburst and were presented by Tylenda et al. (2011). Those photometric data obtained in 2002 were analyzed by using the W-D method (Wilson & Devinney 1971; 1994). The corresponding light curve is shown in Fig. 1 as open circles. The temperature for the primary (star 1, the hotter component star eclipsed at the primary light minimum) was taken as $T_1 = 4500$ K (Tylenda et al., 2011). The bolometric albedo $A_1 = A_2 = 0.5$ and the gravity-darkening coefficients $g_1 = g_2 = 0.32$ were used because of their convective envelopes. For a detailed treat of limb darkening, the logarithmic functions for both the bolometric and bandpass limb-darkening laws were used. The bolometric limb-darkening coefficients $x_{1\text{bolo}}, x_{2\text{bolo}}, y_{1\text{bolo}},$ and $y_{2\text{bolo}},$ and the passband-specific limb-darkening coefficients, $x_{1f}, x_{2f}, y_{1f},$ and y_{2f} were chosen from van Hamme’s table (1993) and are listed in Table 1. It is found that solutions converged at mode 3 and the adjustable parameters are: the orbital inclination $\iota,$ the mean temperature of star 2, $T_2;$ the monochromatic luminosity of star 1, $L_{1\text{bolo}};$ and the dimensionless potential ($\Omega_1 = \Omega_2$ for mode 3).

The q-search method was used to determine the mass ratio. We focus on searching for photometric solutions with mass ratio from 0.03 to 1.5, and solutions were carried out for 147 values of the mass ratio. The relation between the resulting sum Σ of weighted square deviations and q is plotted in Fig. 2. It is found that the solution converged at $q=0.1$ with the lowest value of Σ indicating that the theoretical light curve based on the solution is the best one to fit the observations. Then, q was treated as an adjustable parameter and the value of 0.1 was taken as the initial value. Finally photometric elements were obtained and it is found that the solution converges at $q=0.094.$ The corresponding photometric solutions are listed in Table 1.

As shown in Fig. 1, the light curve of V1309 Sco in 2002 displayed a negative O’Connell effect. i.e., the light maximum following the primary minimum is lower than the other one. The components of V1309 Sco are cool stars. The deep convective envelope along with rapid rotation can produce a strong magnetic dynamo and solar-like magnetic activity. It is expected that dark spots should be observed on photospheres. In the W-D method, there are four parameters for each spot: spot center longitude (θ), spot center latitude (ϕ), spot angular radius (r), and spot temperature factor (T_f), all in units of radian. Our solution suggests that the asymmetry of the light curves can be plausibly explained as the presence of one dark spot on the more massive component. The parameters of the dark spot are shown in Table 2. The theoretical light curves is plotted in Fig. 1 as the solid line that fits the observations well. The corresponding geometric structure at phase 0.25 is displayed in Fig. 3. The photometric solution
Fig. 1 Theoretical light curves calculated by using the W-D method. Open circles refer to those I-band data points observed in 2002, while open triangles to those observations in 2004. The theoretical light curve (the solid line) obtained by using data observed in 2002 reveals that V1309 Sco is a low-mass-ratio and deep contact binary, while the one (the dashed line) for 2004 observations was computed by fixed $q=0.03$.

Table 1 Photometric solutions for V1309 Sco.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Photometric elements</th>
<th>errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_1 = g_2$</td>
<td>0.32</td>
<td>assumed</td>
</tr>
<tr>
<td>$A_1 = A_2$</td>
<td>0.5</td>
<td>assumed</td>
</tr>
<tr>
<td>$x_{1bolo} = x_{2bolo}$</td>
<td>0.313</td>
<td>assumed</td>
</tr>
<tr>
<td>$y_{1bolo} = y_{2bolo}$</td>
<td>0.660</td>
<td>assumed</td>
</tr>
<tr>
<td>$x_{1I} = x_{2I}$</td>
<td>+0.356</td>
<td>assumed</td>
</tr>
<tr>
<td>$y_{1I} = y_{2I}$</td>
<td>+0.360</td>
<td>assumed</td>
</tr>
<tr>
<td>T_1</td>
<td>4500 K</td>
<td>assumed</td>
</tr>
<tr>
<td>$q (M_2/M_1)$</td>
<td>0.094</td>
<td>±0.002</td>
</tr>
<tr>
<td>$\Omega_1 = \Omega_2$</td>
<td>1.8854</td>
<td>±0.0249</td>
</tr>
<tr>
<td>T_2</td>
<td>4354 K</td>
<td>±161K</td>
</tr>
<tr>
<td>i</td>
<td>73.4</td>
<td>±7.0</td>
</tr>
<tr>
<td>$L_1/(L_1 + L_2)$ (I)</td>
<td>0.8929</td>
<td>±0.0032</td>
</tr>
<tr>
<td>$r_1 (pole)$</td>
<td>0.5546</td>
<td>±0.0076</td>
</tr>
<tr>
<td>$r_1 (side)$</td>
<td>0.6202</td>
<td>±0.0133</td>
</tr>
<tr>
<td>$r_1 (back)$</td>
<td>0.6514</td>
<td>±0.0158</td>
</tr>
<tr>
<td>$r_2 (pole)$</td>
<td>0.2074</td>
<td>±0.0129</td>
</tr>
<tr>
<td>$r_2 (side)$</td>
<td>0.2189</td>
<td>±0.0161</td>
</tr>
<tr>
<td>$r_2 (back)$</td>
<td>0.2980</td>
<td>±0.0990</td>
</tr>
</tbody>
</table>
Fig. 2 The relation between Σ and q obtained based on the photometric data in 2002. It is shown that the minimum of Σ is at $q=0.1$.

Table 2 Parameters of the dark spot on the more massive component.

<table>
<thead>
<tr>
<th>Spot parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ (radian)</td>
<td>1.390</td>
</tr>
<tr>
<td>ϕ (radian)</td>
<td>4.688</td>
</tr>
<tr>
<td>r (radian)</td>
<td>0.224</td>
</tr>
<tr>
<td>T_f (T_d/T_b)</td>
<td>0.923</td>
</tr>
</tbody>
</table>

indicates that the temperature of the dark spot is about 350 K lower than that of the stellar photosphere on the more massive component star. The dark spot covers 1.8% of the total photospheric surface that is much larger than that of a spot on the Sun (the area of sunspot is usually less than 1% of the photospheric surface of the Sun). However, the solution of the dark spot derived with the W-D method is definitely not unique. The spot may be composed of a group of small spots.

3 DISCUSSIONS AND CONCLUSIONS

The photometric solution of the 2002 light curve suggests that V1309 Sco is an extreme low mass ratio contact binary star ($q = M_2/M_1 = 0.094$) with an extremely high fill-out factor ($f = 89.5(\pm 40.5)\%$). The asymmetry of the light curve was explained by the presence of a dark stellar spot on the more
massive component. The extremely high fill-out factor indicates that the common convective envelope reaches the outer critical Roche lobe and causes a great quantity of mass and angular momentum loss. This suggests that the merging of the contact binary is driven by dynamical mass loss from the outer Lagrange point. This is in agreement with the rapidly decay in the orbital period (e.g., Pejcha 2014). The period decay timescale P/\dot{P} was decreasing from ~ 1000 to ~ 170 years in about 6 years, which suggests that the dynamically mass-loss rate was increasing.

The binary progenitor of V1309 Sco consists of a giant and a main-sequence companion (e.g., Nandez et al. 2014). The masses of the primary and the secondary were estimated as $1.52 M_\odot$ and $0.16 M_\odot$ by Nandez et al. (2014) with a mass ratio of ~ 0.105. This is consistent with the present value ($q \approx 0.094$). According to the result obtained by Stepien (2011), the instability resulting in the merging of both components was triggered by a dramatic increase of the moment of inertia of the component star when it approached the base of the red giant branch. However, our photometric solution indicates that the merging is produced the dynamically mass loss through the L_2 point.

To understand the physical properties of V1309 Sco before merging, we also analyzed the I-band light curve in 2004 (open triangles). The relation between Σ and q is shown in Fig. 4. As displayed in the figure, the value of Σ is decreasing with the mass ratio q continuously. This indicates that no reliable solutions can be obtained even at an extremely low mass ratio $q=0.03$. The theoretical light curve in Fig. 1 (the dashed line) was calculated by fixed $q=0.03$. This could be explained as the disappear of the common convective envelope of the contact binary system suggesting that the main-sequence companion has started to spiral in the envelope of the giant primary and formed a real "common envelope". This
The relation between Σ and q obtained based on the photometric data in 2004. It is shown that Σ is decreasing with the mass ratio q continuously.

Acknowledgements This work is partly supported by Chinese Natural Science Foundation (No.11133007 and No. 11325315), the Key Research Program of the Chinese Academy of Sciences (Grant No. KGZD-EW-603), the Science Foundation of Yunnan Province (Nos. 2012HC011 and
The Progenitor of the Merger V1309 Sco 7

2013FB084), and by the Strategic Priority Research Program ”The Emergence of Cosmological Structures” of the Chinese Academy of Sciences (No. XDB09010202).

References

Nakano, S. 2008, IAU Circ., 8972
Qian, S.-B., 2001a, MNRAS 328, 635
Qian, S.-B., 2001b, MNRAS 328, 914
Qian, S.-B., 2002a, MNRAS 336, 1247
Qian, S.-B., 2002b, A&A 387, 903
Qian, S.-B., 2003a, MNRAS 342, 1260
Qian, S.-B., 2003b, A&A 400, 649
Qian, S.-B. & Yang, Y.-G., 2004, AJ 128, 2430
Rudy, R. J., Lynch, D. K., Russell, R. W., et al. 2008a, IAU Circ., 8976
van Hamme, W., 1993, AJ 106, 2096
Wilson, R. E., 1994, PASP 106, 921
Yang, Y.-G., Qian, S.-B., Soonthornthum, B., 2012, AJ 143, 122
Zhu, L.-Y., Qian, S.-B., Soonthornthum, B., and Yang, Y.-G., 2005, AJ 129, 2806

This paper was prepared with the RAA \LaTeX macro v1.2.