The Moment Generating Function of Pairwise Velocity in the Context of Redshift Space Distortion

Jing-Wei Zhao and Jun-De Chen

Department of Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
jundechen@sjtu.edu.cn

Received 2020 April 23; accepted 2020 May 13

Abstract We study connections between the pairwise velocity moment generating function \(G(k_\parallel, r) \) and redshift space distortion (RSD) modeling. Here \(k_\parallel \) is the Fourier wavevector parallel to the line of sight, and \(r \) is the pair separation vector. We demonstrate its usage by two examples. (1) Besides the known relations between \(G \) and the RSD power spectrum (and the correlation function), we propose a new RSD statistics \(P_s(k_\parallel, r_\perp) \) whose connection to \(G \) is convenient to evaluate numerically. (2) We then develop a fast method to numerically evaluate \(G \), and apply it to a high resolution N-body simulation. We find that \(G(\ln G) \) shows complicated dependence on \(k_\parallel \) beyond the linear and quadratic dependencies. It not only shows inaccuracy in some existing models and identifies sources of inaccuracy, but also provides possible ways of improving the RSD modeling. More comprehensive investigations on \(G \) are needed to fully explore the usage of \(G \) in RSD modeling.

Key words: cosmology: dark energy, dark matter, large-scale structure of universe

1 INTRODUCTION

Redshift space distortion (e.g. Peebles (1980); Kaiser (1987); Scoccimarro (2004)) is a powerful cosmological probe. It has made significant contribution in the establishment of the standard \(\Lambda \)CDM cosmology (e.g. Davis & Peebles (1983); Peebles (1984)). It continues to be a major scientific target of several major galaxy surveys such as SDSS, 2dF, 6dF,VVDS and BOSS (e.g. Peacock et al. (2001); Tegmark et al. (2004); Guzzo et al. (2008); Reid et al. (2012, 2014)). Ongoing/upcoming stage IV surveys such as DESI, PFS, Euclid, SKA (e.g. DESI Collaboration et al. (2016); Amendola et al. (2016); Abdalla et al. (2015)) will use redshift space distortion (RSD) to achieve 1% accuracy in measuring the structure growth rate \(f(z)\sigma_8(z) \) over multiple redshift bins. Significant further improvement is also possible by more advanced surveys (e.g. Dodelson et al. (2016)).

The physics of RSD is straightforward. In a spectroscopic redshift survey, we assign the associated cosmological distance to a given galaxy by assuming the observed redshift as the cosmological redshift. But since the observed galaxy redshift has an extra Doppler redshift induced by the galaxy peculiar velocity, the measured 3D distribution of galaxies (the so called redshift space distribution), is therefore different from the distribution in real space. This shift in galaxy position happens along the line of sight, but not perpendicular to the line of sight. Therefore it renders the otherwise (statistically) isotropic galaxy distribution into anisotropic distribution. By analyzing this characteristic anisotropy, we are able to infer the peculiar velocity of galaxies, without the need of distance indicators and free of the associated systematics. The peculiar velocity field itself is a major measure of the large scale structure.
(LSS) of the universe, and contains crucial information on dark energy and gravity (e.g. (Zhang et al. 2007; Jain & Zhang 2008)). This makes RSD one of the major dark energy probes.

A major unresolved problem in RSD cosmology is its theoretical modeling. First of all, RSD involves both the nonlinear evolution of density field and velocity field, and the nonlinear coupling between the two. Second, the mapping from real space to redshift space is nonlinear. An inevitable consequence is that even the simplest 2-point correlation function in redshift space is determined by not only the 2-point correlation function in real space, but also \(n \)-point correlation functions \((n > 2)\). Over the past 3 decades, many RSD models (e.g. Peebles (1980); Kaiser (1987); Scoccimarro (2004); Matsubara (2008); Taruya et al. (2010); Seljak & McDonald (2011); Reid & White (2011); Okumura et al. (2012); Zhang et al. (2013); Zheng et al. (2013); Wang et al. (2014); Zheng & Song (2016); Song et al. (2018); Zheng et al. (2019)) have been constructed, tested against numerical simulation (e.g Okumura & Jing (2011); Bianchi et al. (2012); de la Torre & Guzzo (2012); White et al. (2015)), and/or applied in the data analysis. Nevertheless, their accuracy at \(k \geq 0.1-0.2 h / \text{Mpc} \) and their applicability to general galaxy samples require more comprehensive studies and independent checks. Furthermore, to fully realize the power of ambitious surveys beyond stage IV (Dodelson et al. 2016), accurate RSD modeling up to \(k = 0.4-0.5 h / \text{Mpc} \) is required. This is beyond the capability of any existing RSD models.

This paper presents an attempt to study RSD, through the viewpoint of pairwise velocity moment generating function. Although we are not able to obtain any solid results directly improving the RSD modeling, the presented results show useful clues/insights for the generating function based RSD modeling, alternative to existing models. The paper is organized as follows. In Section 2 we present the theoretical results linking the pairwise velocity moment generating function to the RSD modeling in configuration space, Fourier space and hybrid space. In Section 3 we use N-body simulation to evaluate the generating function and its dependence on the Fourier wavevector parallel to the line of sight \(k_\parallel \). Section 4 discusses the possible implications, summarizes the results, and lists key issues for future works.

2 THE PARWISE VELOCITY MOMENT GENERATING FUNCTION AND ITS CONNECTION TO RSD MODELING

Redshift space distortion changes the galaxy/DM particle position \(x \) to \(s \),

\[
s = x + \frac{v \cdot \hat{x}}{H(z)} \hat{x} = x + \frac{v_\parallel}{H(z)} \hat{x} .
\]

(1)

Here \(H(z) \) is the Hubble parameter at redshift \(z \). \(v_\parallel \) is the velocity component along the line of sight. For brevity we often neglect this \(H(z) \) where it does not cause confusion. The mass/number conservation then leads to an equality

\[
(1 + \delta(x))d^3x = (1 + \delta(s))d^3s .
\]

(2)

In Fourier space we have

\[
\delta^s(k) = \int (1 + \delta^s(s))e^{i\mathbf{k} \cdot \mathbf{s}}d^3s - (2\pi)^3\delta_{3D}(k) = \int \left[(1 + \delta(x))e^{i\mathbf{k} \cdot \mathbf{v}_s(x)}\right] e^{i\mathbf{k} \cdot \mathbf{x}}d^3x - (2\pi)^3\delta_{3D}(k) .
\]

(3)

Here \(k_\parallel \) is the wavevector component parallel to the line of sight. We have adopted the parallel plane approximation (distant observer approximation) such that the line of sight is a fixed direction. The power spectrum is defined by

\[
\langle \delta^s(k)\delta^s(k') \rangle = (2\pi)^3\delta_{3D}(k + k')P^s(k) .
\]

(4)

We then obtain

\[
P^s(k) = \int \left[(1 + \delta_1)(1 + \delta_2)e^{i\mathbf{k} \cdot \mathbf{v}_{12}}\right]' e^{i\mathbf{k} \cdot \mathbf{r}'} d^3r' - (2\pi)^3\delta_{3D}(k) .
\]

(5)
Here $\delta_i \equiv \delta(x_i)$ ($i = 1, 2$), $r' \equiv x_1 - x_2$, $v_{12} \equiv v_1(x_1) - v_2(x_2)$. The ensemble average $\langle \cdots \rangle'_{r'}$ is for fixed pair separation r'. We define a function

$$G(k||, r) \equiv \frac{\langle (1 + \delta_1)(1 + \delta_2)e^{ik_\perp v_{12}} \rangle}{1 + \xi(r)}.$$ \hspace{1cm} (6)

By definition $|G| \leq 1$. Any non-zero velocity component anywhere in the field will cause $G \neq 1$. Asymmetric component of v_{12} induces an imaginary part. G is the moment generating function of pairwise velocity (Scoccimarro 2004), since

$$\langle v_{12}^m \rangle \equiv \frac{\langle (1 + \delta_1)(1 + \delta_2)v_{12}^m \rangle}{1 + \xi(r)} = \frac{\partial^m G}{\partial (ik_\parallel)^m} \bigg|_{k_\parallel = 0}, \ m \geq 1.$$ \hspace{1cm} (7)

This moment generating function G determines the redshift space power spectrum

$$P^s(k) = \int \left[(1 + \xi(r'))G(k||, r') - 1 \right] e^{i\mathbf{k} \cdot \mathbf{r}} d^3\mathbf{r}'.$$ \hspace{1cm} (8)

Here for the purpose of numerical evaluation, we have moved the $(2\pi)^3\delta_{3D}(k)$ in Eq. 5 into the integral. Furthermore, G is related to the pairwise velocity probability distribution function (PDF), and the RSD modeling in configuration space (correlation function). Multiplying both sides of Eq. 8 with $\int \exp(-i\mathbf{k} \cdot \mathbf{r})d^3\mathbf{k}/(2\pi)^3$ and performing the integral we obtain the redshift space correlation function

$$1 + \xi^s(r = (r||, r_\perp)) = \int (1 + \xi(r' = (r'_||, r'_\perp)))p(v_{12}|r' = (r'_||, r'_\perp))dr'_||, \ v_{12} = r|| - r'_||.$$ \hspace{1cm} (9)

Here $p(v_{12}|r)$ is the pairwise velocity PDF. It is related to G by

$$p(v_{12}|r) = \int G(k||, r)e^{ik_\parallel v_{12}}\frac{dk||}{2\pi}.$$ \hspace{1cm} (10)

The above results have been known in the literature (e.g. Scoccimarro (2004)). But to our knowledge, no one directly evaluated G and compared it with numerical simulations in the context of RSD. So this will be a major focus of this paper. Eq. 9 is the streaming model widely adopted in RSD modeling. If we adopt a Gaussian $p(v_{12})$ with nonzero $\langle v_{12} \rangle$, we obtain the Gaussian streaming model (Reid & White 2011).

Interestingly, if we multiplying both side of Eq. 8 with $\int \exp(-i\mathbf{k}_\perp \cdot \mathbf{r}_\perp)d^2\mathbf{k}_\perp/(2\pi)^2$ instead, we obtain

$$P^s(k||, r_\perp) = \int \left[(1 + \xi(r))G(k||, r) - 1 \right] e^{ik_\parallel r_\parallel} dr_\parallel.$$ \hspace{1cm} (11)

This is neither the correlation function nor the power spectrum. But this hybrid statistics has some attractive features. (1) $P^s(k|| = 0, r_\perp) = P(k|| = 0, r_\perp) = u_p(r_\perp)$. Namely the $k|| = 0$ mode is unaffected by RSD, and its value equals to projected correlation function. So RSD is constrained to $k|| \neq 0$ modes. This is an advantage that ξ^s does not share. (2) The modeling of $G(k||, r)$ is expected to be more straightforward than $p(v_{12}|r)$. So the modeling of $P^s(k||, r_\perp)$ can be easier than $\xi^s(r_\parallel, r_\perp)$. On the other hand, the measurement of $P^s(k||, r_\perp)$ is as straightforward as $\xi^s(r_\parallel, r_\perp)$. Therefore working with $P^s(k||, r_\perp)$ directly is a promising alternative to $P^s(k||, k_\perp)$ and $\xi^s(r_\parallel, r_\perp)$.

Eqs. 8, 9 & 11 then motivate us to numerically investigate the moment generating function G. We expect that it may provide new insight on the RSD modeling. Furthermore, starting with the pairwise velocity generating function instead of $p(v_{12}|r)$ has certain advantages. First, the parameterization of $p(v_{12}|r)$ is not straightforward and can not be easily obtained by Taylor expansion or other familiar tools. But G and $\ln G$ can be conveniently expanded into its Taylor series in which coefficients are the pairwise velocity moments/cumulants. Second, it is less studied comparing to $p(v_{12}|r)$ and therefore there may be still useful information to be revealed. The third is that in RSD, we often decompose the
peculiar velocity into a large scale component v_L (bulk flow) and a small scale component v_S (random motion), since the two have different impacts on RSD. We can write $v_{12} = v_{12,L} + v_{12,S}$ where $v_{12,L}$ and $v_{12,S}$ are independent to each other. Then the PDF of v_{12} is the convolution of the PDFs of $v_{12,L}$ and $v_{12,S}$,

$$ p(v_{12}|r) = \int p(v_{12,L}|r)p(v_{12,S}|r)\delta_D(v_{12,L} + v_{12,S} - v_{12})dv_{12,L}dv_{12,S}. \quad (12) $$

In combination with Eq. 10 and its inverse Fourier transformation, we are then able to prove a potentially useful relation

$$ G(k||,r) = G_L(k||,r)G_S(k||,r). \quad (13) $$

Here $G_{L,S}$ are the generating functions of $v_{12,L}$ and $v_{12,S}$ respectively. We show one example why this relation is useful. Plugging it into Eq. 11, we obtain

$$ P^*(k||,r_\perp) \simeq \left\{ \int \left[(1 + \xi(r))G_L(k||,r) e^{ik||r_\perp} dr_\perp \right] \right\} G_S(k||,r = (0,r_\perp)). \quad (14) $$

We can move G_S out of the Fourier transform, for two reasons. First, this is a small scale velocity mode, whose spatial correlation is weak and only exists below certain r. Second, due to $r_\perp \neq 0$, only spatial correlation at $r \geq r_\perp$ contributes to $P^*(k||,r_\perp)$. So by appropriate choice of r_\perp, we can set $G_S(k||,r) = G_S(k||,r = (0,r_\perp))$ and obtain the above result.

3 NUMERICAL EVALUATION OF THE PAIRWISE VELOCITY MOMENT GENERATING FUNCTION

We analyze one of the CosmicGrowth simulation series (Jing 2019), which was denoted J6620 in our previous works (e.g. Chen et al. (2018)). The simulation runs with a P3M code (Jing et al. 2007), boxsize $L_{box} = 1200$ Mpc/h, and $N_p = 3072^3$ simulation particles. It adopts the standard ΛCDM cosmology, with $\Omega_m = 0.268$, $\Omega_{\Lambda} = 0.732$, $\Omega_b = 0.044$, $\sigma_8 = 0.83$, $n_s = 0.96$ and $h = 0.71$. Fig. 1 shows the one point PDF of peculiar velocity v_\parallel (namely $v_{x,y,z}$ in the simulation coordinate system). The one point
PDF clearly shows that the velocity distribution is non-Gaussian, with a power-law like long tail of high velocity $v \gtrsim 3000\text{km/s}$. Furthermore, as shown in the literature (e.g. Scoccimarro (2004)), the pairwise PDF is asymmetric, reflecting the mean pairwise velocity $\langle v \rangle_{12} \neq 0$.

For N_k values of k_\parallel of interest, the brute force measurement of G takes $\mathcal{O}(N_p^2 N_k)$ steps. This is too time-consuming. So we design a fast evaluation method with the aid of FFT. **Step 1.** First we assign particles by the nearest grid point (NGP) method to uniform grid of $L_c = 1.17h/\text{Mpc}$. Each cell then has an estimated overdensity $\delta = \sum_i \hat{n} - 1$, where the sum is over all particles within this cell. $\hat{n} = 3^3$ is the mean number of simulation particles per cell. For a given k_\parallel, we also have a field $\hat{p} = \sum_i \exp(ik_\parallel v_{ij})/\hat{n}$, summing over the same particles. In the continuum limit, this approaches $(1 + \delta) \exp(ik_\parallel v_\parallel)$. We choose the line of sight direction as either one of the x, y, z simulation axes. **Step 2.** We evaluate $\langle \hat{\delta}_1 \hat{\delta}_2 \rangle$ and $\langle \hat{p}_1 \hat{p}_2^* \rangle$ by FFTs. The first FFT is $\delta(x) \to \tilde{\delta}(k)$. The second is an inverse FFT, $\hat{\delta}(k)\tilde{\delta}^*(k) \to \langle \hat{\delta}_1 \hat{\delta}_2 \rangle_r$. We perform the same for \hat{p} and obtain $\langle \hat{p}_1 \hat{p}_2 \rangle_r$. We then obtain

$$G(k_\parallel, r) = \left. \frac{\langle \hat{p}_1 \hat{p}_2^* \rangle_r}{1 + \langle \hat{\delta}_1 \hat{\delta}_2 \rangle_r} \right|_{\text{FFT}}$$ \hspace{1cm} (15)

For each k_\parallel, it takes 4 FFTs to obtain $G(k_\parallel, r)$ at N_c configurations of r. The total computation reduces to a $\mathcal{O}(N_c \log_2 (N_c) N_k)$ process. **Step 3.** We then repeat for other values of k_\parallel. To avoid spatial smoothing effect caused by the grid assignment, the scale investigated must satisfy $r \gg L_c$. Therefore in this paper we only focus on $r \gtrsim 7h/\text{Mpc}$.

3.1 The real part of G and $\ln G$

Since $|G| \leq 1$, we plot $1 - \text{Re}(G)$ (the real part of $1 - G$) in Fig. 2. The result shown is at $z = 0$, as a function of $k_\parallel \leq 0.4h/\text{Mpc}$. G also depends on both the amplitude of r and $u_r \equiv r_\parallel/r$. So we show 4 values of $r = 7.6, 25, 119 & 236h^{-1}\text{Mpc}$, and 4 values of $u_r = 0.3, 0.5, 0.7, 0.9$. Fig. 2 shows that $1 - \text{Re}(G)$ has a complicated dependence on k_\parallel, r and u_r. According to Eq. 6 & 7, $1 - \text{Re}(G)$ only
contains terms $k^2_n \ (n \geq 1)$ and the leading order term is k^2_0. Fig. 2 shows that the k^2_0 dependence is not a good approximation at all. The slow-down of $1-\text{Re}(G)$ at large k_0 means that k^2_0 term (with a sign opposite to the k^2_0 term) will become important. $1-\text{Re}(G)$ in general decreases with increasing r, for fixed k_0 and u_r. It approaches the limit of no spatial correlation in $v_{1,2}$ when $r \gtrsim 100\text{Mpc}$. The dependence on u_r is weak, although visible. This dependence is caused by the anisotropy in the pairwise velocity moments, whose leading order dependence on u^2_r is $1 + u^2_r(\psi_\parallel/\psi_\perp - 1)$. Since ψ_\parallel and ψ_\perp (the one-dimensional velocity correlation for the cases of $r_\perp = 0$ and $r_\parallel = 0$ respectively) do not differ significantly, the dependence on u_r is weak in G. Fig. 3 shows the dependence of $\text{Re}(\ln G)$ on k_0. The dependence now looks more regular, and $\text{Re}(\ln G) \propto k^2_0$ is a better approximation that that in $1-\text{Re}(G)$. Nevertheless, closer investigations show deviation beyond the k^2_0 behavior.

3.2 The imaginary part of G and $\ln G$

Fig. 4 & 5 show the imaginary part of G and $\ln G$. The k_0 dependence is even more complicated. It differs from $\propto k_0$ (the first order Taylor expansion) significantly. The imaginary part of G is caused by mean pairwise velocity and other higher order odd pairwise velocity moments. The complexity shown here demonstrates a better understanding and modeling of these terms. The Gaussian streaming model assumes a Gaussian $p(v_{12})$, which is equivalent to $\ln G = i k_0 \langle v_{12} \rangle - k^2_0 \sigma^2_{12}/2$. Here $\sigma^2_{12} \equiv \langle v^2_{12} \rangle - \langle v_{12} \rangle^2$. The deviation of $\text{Re}(\ln G)$ from the k^2_0 dependence and the deviation of $\text{Im}(\ln G)$ from the k_0 dependence clearly suggest the limitation of Gaussian streaming model. But it also suggests possible ways to improve. This example demonstrates the usage of pairwise generating function in RSD modeling.

4 DISCUSSIONS AND CONCLUSIONS

We highlight the connection between the pairwise velocity generating function $G(k_0, r)$ and the power spectrum $P^s(k_0, k_\perp)$ (and the correlation function $\langle \xi^s(r_\parallel, r_\perp) \rangle$) in redshift space. We also propose a
hybrid statistics $P_s(k_\parallel, r_\perp)$, and connect it with G. By directly evaluating and understanding G in the context of RSD, it is hopeful to improve the RSD modeling. As a first attempt, we developed a quick evaluation method of G, and applied it to a high resolution (3072^3 simulation particle) simulation. The measured G shows rich features in the k_\parallel and r space. Since G directly determines the RSD statistics, these features must be well understood for accurate RSD modeling. For example, $\text{Im} \left(\ln G \right)$ shows
significant departure from the linear $k_{||}$ dependence, suggesting inaccuracy in the Gaussian streaming model widely used in RSD data analysis. This is certainly an issue for future investigation.

There are many important issues to be investigated in future works. (1) We need to appropriately estimate the cosmic variance in G. We plan to use the 3 CosmicGrowth simulations of 3072^3 particles and $L_{\text{box}} = 600h^{-1}\text{Mpc}$ (Jing 2019) for this purpose. Together with 3 independent directions, we will have 9 independent samples to evaluate G and its cosmic variance. (2) We will evaluate the redshift dependence of G and pay more attention to $z \sim 0.5 - 1.5$ of great interest for future spectroscopic redshift surveys such as DESI, PFS, Euclid and SKA. (3) More importantly, we will focus more on the halo/subhalo pairwise velocity moment generating function. They are more closely related to the observed galaxy RSD. The difference between the halo pairwise velocity G and the dark matter G can be highly non-trivial, due to the halo definition and the associated inhomogeneous smoothing of the velocity field. (4) We need to quantify the contribution from individual moments (cumulants) to $G(\ln G)$. Also we need to propagate errors in G to errors in $P_s(k_{||}, k_{\perp})$ and $P_s(k_{||}, r_{\perp})$, so are those in $p(v_{12}|r)$ and $\xi^4(r_{||}, r_{\perp})$.

Acknowledgements This work was supported by the National Science Foundation of China (#11621303).

References

Abdalla, F. B., Bull, P., Camera, S., et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 17 1
Jing, Y. 2019, Science China Physics, Mechanics, and Astronomy, 62, 19511 4, 8
Peebles, P. J. E. 1980, The large-scale structure of the universe, ed. Peebles, P. J. E. 1, 2
Scoccimarro, R. 2004, Phys. Rev. D, 70, 083007 1, 2, 3, 5